$F = \text{field} \quad R = F[x]$

Division Theorem 8.2.2: Let $f(x), g(x) \in R[x]$ with $g(x) \neq 0$. Then $\exists q(x)$ and $m(x) \in R[x]$ with $\deg m(x) < \deg g(x)$ such that

\[f(x) = q(x)g(x) + m(x), \]

$q(x) = \text{quotient}, \quad m(x) = \text{remainder}$

$f(x) = \text{dividend}, \quad g(x) = \text{divisor}$
If \(\deg g(x) = 0 \), then \(m(x) = 0 \).

\[\text{Proof. Suppose } \deg b < \deg g. \text{ Then } q(x) = 0 \]
and \(m(x) = b(x) \).

Suppose \(\deg b(x) \geq \deg g(x) \).
\[b(x) = a_0 + a_1 x + \cdots + a_m x^m \quad m \geq n \]

where \(a_m \neq 0 \) with \(b_m \neq 0 \)

Let \(c = a_m / b_m \) and
\[h(x) = f(x) - c \cdot x^{m-1} g(x) \]
\[= (a_m x^m + \cdots) - \frac{a_m}{b_m} \cdot x^{m-m} (b_m x^m + \cdots) \]
\[= (a_m x^m + \cdots) - (a_m x^m + \cdots) \]

Hence deg \(h(x) < \deg f(x) \).

Argue by induction on \(\deg f(x) \).

Assume inductively that there is a quotient
and remainder for \(h(x) = g'(x)g(x) + m'(x) \)

We know

\[
\begin{align*}
 v(x) &= h(x) + c x^{m-n} g(x) \\
 &= g'(x)g(x) + m'(x) + c x^{m-n} g(-x) \\
 &= (c x^{m-n} + g'(x)g(x) + m'(x))
\end{align*}
\]
\[\varphi(x) = cx^m + \varphi'(x) \]

and \[m(x) = m'(x). \quad \text{QED} \]

Recall the Euclidean algorithm for integers.

\[\text{e.g., } a_0 = 86 \quad a_1 = 16 \]
Divide \(a_0 \) by \(a_1 \) and call the remainder \(a_{-1} \) \(\equiv \).

\(a_0 \) \(\equiv \) \(a_2 \) \(\equiv \).

\(a_{-1} \) \(\equiv \) \(a_3 \) \(\equiv \).

\(a_2 \) \(\equiv \) \(a_4 \) \(\equiv \).

The last nonzero remainder is the \(\text{GCD} \).
\[(86, 16) = (2) \]
\[(m, n) = (\gcd(m, n)) \quad \text{for } m, n \in \mathbb{Z}\]

Can do the same with polynomials

\[a_0 = 3x^3 + 1 \quad a_1 = x^2 + 1 \quad F = \mathbb{Q}\]
\[
\begin{array}{c}
\frac{3x^2 + 1}{x^2 + 1} \quad 3x + 1
\end{array}
\]

\[
\begin{array}{c}
3x^3 + 3x \\
-3x + 1
\end{array}
\]

\[a_2 = -3x + 1\]

Divide \(a_1\) by \(a_2\) and call the remainder \(a_3\)
$-3x + 1 \sqrt{x^2 - x^{1/3}} + 1 \frac{x^{1/3} + 1}{x^{1/3}} - \frac{1}{9}$
gcd \((3x^2 + 1, x^2 - 1)\) = \(10\)
The polynomials are relatively prime if \(\gcd(f, g) = h \), then \(h \) divides both \(f \) and \(g \) and no polynomial
of larger degree does.

A polynomial is monic if its
leading coeff. is 1.

See Thm 8.2.6
Theorem 8.3.2 \[\text{Let } \ f(x) \in F[x] \]

Suppose \(a \in F \). Then

\[f(a) = 0 \iff f(x) \text{ is divisible by } (x-a). \]
\[f \in \text{obvious} \]

\[\Rightarrow \text{ Use division algorithm} \]

\[b(x) = g(x)(x-a) + \gamma \]

for some \(\gamma \in F \). \text{Hence} \(h(a) = \gamma \).
Hence $f(a)=0 \Rightarrow m=0 \Rightarrow b(x)=a(x\sqrt{x}-a)$

QED

We say a is a zero of $b(x)$.

Theorem 8.3.7 A polynomial of degree n has $\leq n$ zeros.
Proof Each zero leads to a linear factor of $f(x)$. It cannot have more than n of them. QED

Theorem 8.3.10 Let F be finite and let G be a subgroup of F^*.
Then G is cyclic.

Prove that G is a finite abelian group if G is cyclic and $G = C_{d_1} \times C_{d_2} \times \cdots \times C_{d_m}$, where each d_i is a prime power.
Let \(N = |G| = \text{gcd}(d_1, d_2, \ldots, d_m) \) and \(M = \text{lcm}(d_1, d_2, \ldots, d_m) \). Each \(x \in G \) satisfies \(x^M = 1 \), so \(x^M - 1 = 0 \). There are \(N \) elements with this property, so \(x^M - 1 \) has \(N \) factors, so \(N \leq M \).
Since \(N = 161 = d_1 d_2 \cdots d_m \), \(M \leq N \).

Hence \(M = N \). Hence the primes in the \(d_i \) are distinct and cyclic. QED.
Thm 8.3.11 \(f(x) \in \mathbb{R}[x] \subset \mathbb{C}[x] \)

If \(a + b \imath \in \mathbb{C} \) is a zero for root of \(f(x) \), then so is \(a - b \imath \).

Here \(a, b \in \mathbb{R} \).
Let \(q(x) = (x-(a+bi))(x-(a-bi)) \)

\[
= x^2 - 2ax + a^2 + b^2
\]

Divide \(f(x) \) by \(q(x) \) in \(\mathbb{R}[x] \).

\[
f(x) = g(x)(x^2 - 2ax + a^2 + b^2) + r(x)
\]

where \(r(x) = c(x + d) \)
Mathematics

Let $c, d \in \mathbb{R}$.

For any complex numbers $a + bi$ and $c + di$,

\[
q(a + bi) g(a + bi) + (c + di) + d = 0
\]

Given the assumption

\[
c + d + b - i = 0
\]
\[= ac + d - bc \cdot i \]

We know \(ac + d = 0 \) and \(bc = v \).

So \(f(a - b\cdot i) = 0 \), \(\Leftrightarrow \)

\((a - b\cdot i) \) is a root of \(f(x) \), QED.
If \(f(x) \in \mathbb{F}[x] \) is irreducible, if it is not the product of 2 polynomials of smaller degree.

Example: \(x^2 + 1 \) is irreducible in \(\mathbb{R}[x] \) but not in \(\mathbb{C}[x] \).
\((x^3; i) = (x - i)(x + i) \in \mathbb{C}[x]\)

Theorem 8.4.5: Let \(f(x) \in \mathbb{C}[x]\) be irreducible and suppose \(f(x)\) divides \(g(x) h(x)\). Then \(f\) divides either \(g\) or \(h\). Assume \(b, g, h\) and \(d\) are monic.
Proof: Let \(d(x) = \gcd(f, g) \). Then
1. \(d \mid f \) since \(f \) is irreducible. Either
2. \(d = f \) or 2) \(d = 1 \).

I should have said:
If \(c = \gcd(a, b) \)
then \(c = ma + lb \).

In case 1 above, \(d = f \) divides \(g \) so \(f \) divides \(g \).

In case 2
\[1 = \mu(x)g(x) + \nu(x)\gamma(x)\]

\[h(x) = h(x)1 + (x)g(x)\]

If \(\gamma\) divides both terms on the right, so it divides \(h\).