Thm 8.6.6 Let \(p(x) \in \mathbb{F}[x] \) be a field and \(I = (p(x)) \subset \mathbb{F}[x] \).

\(I \) is maximal \(\iff \) \(p(x) \) is irreducible.

Cor 8.6.7 \(\text{In } R = \mathbb{F}[x] \)

\((p(x)) \) is prime \(\iff \) \((p(x)) \) is maximal \(\iff \) \(p(x) \) is irreducible.

This means \(R/I \) is a field.

Example \(\mathbb{F} = \mathbb{R} \) and \(p(x) = x^2 + 1 \).
\[\mathbb{R}[x]/(x^2 + 1) = \mathbb{C} \]

where \(x = \sqrt{-1} \).

In general prime ideals need not be maximal.

Example: \(\mathbb{R} = \mathbb{Z}[x] \)

\((x) \) is prime but not maximal.

\((x, 2) \) is maximal.

Proof of 8.6.7: Suppose \((p(x)) = \mathbb{R} \).

\(p(x) \) is prime. We know \(\mathbb{R} \) is a PID.
Suppose I is not maximal but is contained in a bigger ideal $J = (f(x))$. Then $f(x) = g(x)q(x)$ so ϕ is not irreducible.

Let $\overline{R} = \frac{R}{I} = \overline{\{x\}}/(\overline{\phi(x)})$ and let \overline{f} and \overline{g} denote the images of f and g in \overline{R}.

Since $\overline{\phi(x)}$ is prime, \overline{R} is a domain. Hence $\overline{f} \overline{g} = 0$ implies
either \(\overline{f} = 0 \) or \(\overline{g} = 0 \)
if \(\overline{f} = 0 \) then \(\overline{f} \) is a multiple of \(\overline{p} \)
if \(\overline{g} = 0 \) then \(\overline{g} \) is a multiple of \(\overline{p} \)

Hence \((\overline{p}) = (\overline{f}) \) and \(f \) is maximal.

Review of linear algebra

Can define a vector space \(V \) over any field \(F \), not just \(\mathbb{R} \) or \(\mathbb{C} \).
Can define linear independence, basis and dimension over any F and subspaces.

Examples:

1) $F[x]$ is a vector space over F.
 - It is infinite dimensional.

2) The set of polynomials of degree < n is an n-dimensional vector space.
Prop 10.1.8: Let V be a vector space over F with $v \in V$ and $c \in F$.

1) $(cv = 0) \iff c = 0 \quad \forall v, v = 0$.
2) $(c)v = -(cv) = c(-v)$.

Thm 10.1.10: A subset U of V is a subspace if $\forall \, c \in F$ and $v, w \in U$,

1) $v - w \in U$
2) $c \cdot v \in U$
We can define the dimension of a vector space in the usual way. It may or may not be finite.

Examples

1) \(\mathbb{R}^2\) has dim 2 over \(\mathbb{R}\).

2) \(\mathbb{Q}(\sqrt{2})\) has dim 2 over \(\mathbb{Q}\).

\[\dim_{\mathbb{Q}} \mathbb{Q}(\sqrt{2}) = 2\]
3) \(\dim_{\mathbb{F}_2} \mathbb{F}_4 = 2 \)
\[
\mathbb{F}_4 = \mathbb{Z}/2[x]/(x^2 + x + 1)
\]
\[
\mathbb{F}_8 = \mathbb{Z}/2[x]/(x^3 + x + 1)
\]

\[
= \{ a + b \cdot x + c \cdot x^2 : a, b, c \in \mathbb{Z}/2 \}
\]

4) \(\mathbb{Q} \subset \mathbb{K} \subset \mathbb{L} \)
\[
\mathbb{Q}(\sqrt{3}) \quad \mathbb{K}[\sqrt{2}] \quad \mathbb{K}[\sqrt{1/(\sqrt{2} - 2)}]
\]
\[
\mathbb{Q}[x]/(x^2 + 3) \quad \mathbb{K}[\sqrt{7}/(\sqrt{2} - 2)]
\]
\[\dim_k K = 2 \quad \dim_k L = 3 \]
and \[\dim_k L = 6 \]

In general, when \[k < K < L \] then
\[\dim_k L = \dim_k K \dim_k L. \]

Prop: Let \(V \) be a vector space of \(\dim_m n > m \) with \(m \) linearly independent vectors.
\{ v_1, v_2, \ldots, v_m \}. \text{ Then we can add } n-m \text{ more vectors to get a basis of } U.\]

- Field extensions:
 If \(p(x) \in F[x] \) is irreducible, then \(F[x]/(p(x)) \) is a field extension of \(F \).
Problem 10.22. Let $F \subseteq E$ with $\alpha \in E$. Let E be a splitting of E

$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : b \geq g \in F[\alpha] \right\}$

= subfield of E.

1) $F[\alpha]$ is a splitting of E containing F.

$F[\alpha] = \left\{ f(x) : f \in F[x] \right\}$
2) $F[x]$ is the smallest such subring

3) $F(x)$ is a subfield of E containing F

4) R is the smallest such subfield

Proof: 1) and 3) are obvious

For 2) let $F \subseteq R \subseteq E$
where \(R \) is a subring.

Then every polynomial of \(x \) over \(F \) is in \(R \), so \(R \supset F(\alpha) \).

Proof of 9) is similar.

QED

Def: We say \(E \) is an algebraic extension of \(F \) if it is
\(F(x) \) for some \(x \in E \).

We will see next time that

\[
F([x]) = F(x).
\]