Let \(w = -\frac{1 + \sqrt{3}}{2} \), so \(w^3 = 1 \).

\[
1 + w + w^2 = 0
\]

\[
w \leftrightarrow w^2 = -1 - w
\]

\[
a + bw \rightarrow a + bw^2 = (a-b) - b \cdot w
\]

\[
a + b \cdot \sqrt{3} \leftrightarrow a - b \cdot \sqrt{3}
\]

\[
\mathcal{O}(\sqrt{3}) = \{ a + b \cdot \sqrt{3} \mid a, b \in \mathbb{Q} \}
\]

\[
L = \mathbb{K}(\sqrt{3}) = \{ c + d \cdot \sqrt{3} + e \cdot \sqrt{4} \mid c, d, e \in \mathbb{K} \}
\]

\(\mathbb{K} \) is a 2-dimensional vector over \(\mathbb{Q} \).
L is 2-dimensional.

L has a group of field automorphisms isomorphic to S_3. This is called the Galois group of L over \mathbb{Q}, denoted $\text{Gal}[L/\mathbb{Q}]$.

The 3 cube roots of 2.
$w^3, w^2, w^\frac{3}{2}$ are permuted by elements of G,S_n.

Consider 2 diagrams
Subgroups of G, C

Normal subgroups

Index

Rank $/\mathbb{Q}$

Subfields of L
\[F_1 = \{ (x, y) \in \mathbb{R}^2 : x, y, z \in \mathbb{Q} \} \]
\[F_2 = \{ (w^3, z) \in \mathbb{Q}^2 : x, y, z \in \mathbb{Q} \} \]
\[F_3 = \{ (w^2, z) \in \mathbb{Q}^2 : x, y, z \in \mathbb{Q} \} \]
For any subgroup $H < G = S_3$, the set $L^H = \{ \lambda \in \mathbb{L} : h(\lambda) = \lambda \text{ for each } h \in H \}$ is the fixed point field of H. If H is a normal subgroup of G, then the subfield L^H has an automorphism g isomorphic to G/H.
$K = L^2$ has an aut. of order 2 ($\cong G_2/S_2$) F_1, F_2, F_3 have trivial automorphism gs.
Other coming attractions

Ruler + compass constructions.

Bisection of an angle

It is possible to construct an \(n \)-sided polygon for any \(n \) of the form
Lema 1.4.\, \textit{Let }$$a \in \mathbb{Z}$$\text{ be a prime number.}

Of course, if \(\ell > 0 \), then \(n = \ell \cdot 2 \).

\textbf{Proof.} \textbf{Claim.} $$n = \ell \cdot 2$$ \textit{implies }$$n = 1 - \text{even}$$

\begin{align*}
\text{Assume } n & = \ell \cdot 2. \\
\text{Then, for } k = 0, 1, 2, \ldots
\end{align*}
j is a power of 2.

$1 + 2^2$, $1 + 2^4$, $1 + 2^8$ and $1 + 2^{16}$ are primes.

$1 + 2^{32}$ is divisible by 641 (Euler).

These are called Fermat primes.
Other R+C problems

1. Trisect an angle NO
2. Double the cube NO
3. Squaring the circle NO

Galois' rig theorem
There is no general formula for the solution of a degree \(n \) polynomial for \(n \geq 5 \).

Related fact: For \(n \geq 5 \), the alternating \(A_n \) is simple.