1. Give definitions of each of the following. (5 POINTS EACH)
 (a) The Galois group \(\text{Gal}(E/F) \) of a field extension \(F \subset E \)
 (b) A Galois extension.
 (c) A square root tower over a field \(F \).

2. (15 POINTS) Let \(F \subset E \) be a Galois extension with \(G = \text{Gal}(E/F) \). Explain the relation between subgroups \(H \) of \(G \) and intermediate fields \(K \) with \(F \subset K \subset E \).

3. (15 POINTS) Let \(E \) be a Galois extension of the field \(F \) such that \(\text{Gal}(E/F) \) is abelian. Show that for any intermediate field \(K \) with \(F \subset K \subset E \), \(K \) is a Galois extension of \(F \).

4. Consider the polynomial
 \[f(x) = x^4 + 2x^2 + 3 = (x + \alpha)(x - \alpha)(x + \beta)(x - \beta) \]
 where \(\alpha = \sqrt{-1 + \sqrt{-2}} \) and \(\beta = \sqrt{-1 - \sqrt{-2}} \), and let \(E = \mathbb{Q}(\alpha, \beta) \) be the splitting field of \(f(x) \) over \(\mathbb{Q} \). The Galois group \(G = \text{Gal}(E/\mathbb{Q}) \) is generated by two elements \(\phi_1 \) and \(\phi_2 \) defined by the following table.

 \[
 \begin{array}{c|cc}
 x & \phi_1(x) & \phi_2(x) \\
 \hline
 \alpha & -\alpha & \beta \\
 \beta & \beta & \alpha \\
 \end{array}
 \]

 (a) (5 POINTS) Find the minimal polynomials of \(\beta \) over the field \(\mathbb{Q}(\alpha) \) and of \(\alpha \) over the field \(\mathbb{Q}(\beta) \).

 (b) (10 POINTS) Describe the Galois group \(G \) as a subgroup of \(S_4 \) by analyzing how it permutes the four roots of \(f(x) \). Determine its order and says whether or not it is abelian.
 HINT: DRAW A SQUARE WITH VERTICES LABELED \(\alpha, \beta, -\alpha \) AND \(-\beta \) LIKE THIS.

 \[
 \begin{array}{cc}
 \alpha & \beta \\
 -\beta & -\alpha \\
 \end{array}
 \]

 (c) (10 POINTS) What subgroup fixes the intermediate field \(\mathbb{Q}(\sqrt{-6}) \)? Note that \(\sqrt{-6} = \alpha\beta(\alpha^2 - \beta^2)/2 \). You should find the image of this element under each \(\phi_j \).
5. Let \(\zeta = e^{2\pi i / 7} = \cos(2\pi/7) + i \sin(2\pi/7) \) and \(E = \mathbb{Q}(\zeta) \). Note that the minimal polynomial for \(\zeta \) is

\[
f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = (x - \zeta)(x - \zeta^2)(x - \zeta^3)(x - \zeta^4)(x - \zeta^5)(x - \zeta^6)
\]

and \(E \) is a Galois extension of \(\mathbb{Q} \) with \(\text{Gal}(E/\mathbb{Q}) = C_6 \).

(a) (10 POINTS) Find an automorphism \(\phi \) of \(E \) that generates the Galois group and describe its action on the zeros of \(f \).

(b) (10 POINTS) Describe the subfield \(K \) of \(E \) fixed by the subgroup of order 3.

(c) (10 POINTS) Describe the subfield \(L \) of \(E \) fixed by the subgroup of order 2.