1. **Calendar code problem.** (20 points) Let x be an integer and let $y = x^7$. Find the smallest positive integer n such that $y^n \equiv x \pmod{2013}$ for all x.

Solution: This is a problem about the multiplicative group $(\mathbb{Z}/2013)^\times$, where we are looking for the inverse of the element 7. The structure of this group depends on the prime factorization of 2013. Since $2013 = 3 \cdot 11 \cdot 61$,

$$(\mathbb{Z}/2013)^\times = (\mathbb{Z}/3)^\times \times (\mathbb{Z}/11)^\times \times (\mathbb{Z}/61)^\times = C_2 \times C_{10} \times C_{60}.$$

This means that we need $7n \equiv 1 \pmod{2, 10, 61}$ simultaneously. The first congruence is satisfied by any odd n, so write $n = 2m + 1$.

Next we need

\[
\begin{align*}
7(2m + 1) &= 14m + 7 \equiv 1 \pmod{10} \\
14m + 6 &= 0 \pmod{10} \\
7m + 3 &= 0 \pmod{5}
\end{align*}
\]

This is satisfied by $m \equiv 1 \pmod{5}$, so we write $m = 5k + 1$, and

\[
n = 2m + 1 = 2(5k + 1) + 1 = 10k + 3.
\]

Our third condition is

\[
\begin{align*}
7n &= 70k + 21 \equiv 1 \pmod{60} \\
70k + 20 &= 0 \pmod{60} \\
7k + 2 &= 0 \pmod{6}
\end{align*}
\]

This is satisfied by $k = 4$, giving $n = 10k + 3 = 43$.

2. Let $\zeta = e^{2\pi i/16} = \left(\sqrt{1+i}\right) / \sqrt{2}$ (a primitive 16th root of unity) and let $E = \mathbb{Q}(\zeta)$.

(a) (10 points) Find the minimal polynomial $f(x)$ of ζ and describe its zeros in terms of ζ.

Solution: ζ is a zeros of

\[
x^{16} - 1 = (x + 1)(x - 1) = (x^8 + 1)(x^4 + 1)(x^2 + 1)(x + 1)(x - 1).
\]
Zeros of the latter factors are 8th roots, fourth roots and square roots of unity so \(\zeta \) is a zero of the first factor, namely an 8th root of \(-1\). The other zeros are the other primitive 16th roots of unity, which are the odd powers of \(\zeta \).

(b) (10 points) Find the Galois group \(G \) of \(E \) over \(\mathbb{Q} \) and describe its action on the roots of \(f(x) \). Denote by \(\alpha \) and \(\beta \) the automorphisms sending \(\zeta \) to \(\zeta^3 \) and \(\zeta^{-1} \) respectively.

Solution: We have

\[
\begin{align*}
\alpha^2(\zeta) &= \alpha(\zeta^3) = \zeta^9 \\
\alpha^4(\zeta) &= \alpha^2(\zeta^9) = \zeta^{81} = \zeta \\
\beta^2(\zeta) &= \beta(\zeta^{-1}) = \zeta,
\end{align*}
\]

so \(\alpha \) and \(\beta \) have orders 4 and 2. \(G \) is isomorphic to \(C_4 \times C_2 \). The action on the odd powers of \(\zeta \) is indicated in the following diagram.

\[
\begin{array}{cccccccc}
\zeta & \alpha & \beta & \zeta^9 & \alpha & \beta & \zeta^{11} & \alpha & \beta \\
\downarrow & \downarrow \\
\zeta^3 & \alpha & \beta & \zeta^7 & \alpha & \beta & \zeta^5 & \alpha & \beta \\
\downarrow & \downarrow \\
\zeta^5 & \alpha & \beta & \zeta^3 & \alpha & \beta & \zeta^9 & \alpha & \beta \\
\downarrow & \downarrow \\
\zeta^9 & \alpha & \beta & \zeta^3 & \alpha & \beta & \zeta^9 & \alpha & \beta \\
\end{array}
\]

3. Let \(G \) be the Galois group of the previous problem.

(a) (10 points) Find all subgroups of order 4 in \(G \). Denote them by \(H_1, H_2 \) and so on.

Solution: The elements \(\alpha \) and \(\alpha \beta \) each generate a cyclic subgroup of order 4, which we will call \(H_1 \) and \(H_2 \) respectively. The subgroup \(H_3 \) generated by \(\alpha^2 \) and \(\beta \) is isomorphic to \(C_2 \times C_2 \).

(b) (20 points) Find the subfield \(K_i \) of \(E \) fixed by each \(H_i \).

Solution: In each case the field \(K_i \) is a quadratic extension of \(\mathbb{Q} \), since the subgroup has index 2. We find it by looking for an element fixed by \(H_i \) that is not in \(\mathbb{Q} \).

For \(H_1 = \langle \alpha \rangle \), the element \(x_1 = \zeta^2 + \zeta^6 \) will do. Then we have

\[
x_1^2 = \zeta^4 + 2\zeta^8 + \zeta^{12} = \zeta^4 - 2 - \zeta^4 = -2,
\]

so the field is \(K_1 = \mathbb{Q}(\sqrt{-2}) \).

For \(H_2 \), its generator \(\alpha \beta \) fixes \(\zeta^4 = i \), so the field is \(K_2 = \mathbb{Q}(\sqrt{-1}) \).
For H_3, the element $x_3 = \zeta^2 + \zeta^{-2}$ is fixed by both α^2 and β. Then we have

$$x_3^2 = \zeta^4 + 2 + \zeta^{-4} = \zeta^4 + 2 - \zeta^4 = 2$$

so $K_3 = \mathbb{Q}(\sqrt{2})$.

4. Let $F = \mathbb{Q}(\sqrt{-3})$ and let E be the splitting field over F of $f(x) = x^6 - 5$.

(a) (10 points) Find the zeros of $f(x)$.

Solution: Since $f(x) = x^6 - 5$, its roots are the sixth roots of 5. Let $\zeta = e^{2\pi i/6} = (1 + \sqrt{-3})/2$. Then these roots are

$$\left\{\zeta^j \sqrt[6]{5} : 0 \leq j \leq 5\right\}$$

(b) (10 points) Find the Galois group H of E over F.

Solution: The field is $E = F(\sqrt[6]{5})$. There is a field automorphism ρ over F that multiplies each zero of $f(x)$ by ζ. It has order 6 and the group is C_6.

(c) (10 points) Let $\alpha = \sqrt[6]{5}$, the positive real sixth root of 5, $1.30766\ldots$. There is a field automorphism ϕ of E over \mathbb{Q} with $\phi(\alpha) = \alpha$ and $\phi(\sqrt{-3}) = -\sqrt{-3}$. Describe its action on the zeros of $f(x)$. HINT: IT HELPS TO PICTURE THESE ZEROS AS THE VERTICES OF A HEXAGON.

Solution: We have

$$\phi(\zeta) = \phi\left(\frac{1 + \sqrt{-3}}{2}\right) = \frac{1 - \sqrt{-3}}{2} = \zeta^5 = \zeta^{-1}.$$

It follows that $\phi(\pm \alpha) = \pm \alpha$, $\phi(\pm \zeta \alpha) = \pm \zeta^{-1} \alpha$ and $\phi(\pm \zeta^2 \alpha) = \pm \zeta^{-2} \alpha$.

(d) (10 points) Find the Galois group G of E over \mathbb{Q} by describing its action on the zeros of $f(x)$. Determine whether it is solvable or not, and prove your answer.

Solution: The field is $E = F(\alpha) = \mathbb{Q}(\alpha, \sqrt{-3})$. We have $[E : \mathbb{Q}] = [F : \mathbb{Q}] = 6 \cdot 2 - 12$. G permutes the six zeros of $f(x)$, which are the vertices of a hexagon in the complex plane. The automorphism ρ rotates them counterclockwise through an angle of $\pi/3$, and ϕ reflects through the x-axis. These generate the dihedral group D_{12}, the symmetry group of the hexagon.

G is solvable because both its normal subgroup $H = \text{Gal}(E/F)$ and the quotient $G/H = \text{Gal}(F/\mathbb{Q})$ are abelian.
5. Let S denote the set of primes less than 20, let

$$f(x) = \prod_{p \in S} (x^2 - p)$$

and let E be the splitting field of $f(x)$ over \mathbb{Q}.

(a) (10 points) What is $G = \text{Gal}(E/\mathbb{Q})$?

Solution: The zeros of $f(x)$ are the positive and negative square roots of the primes in S. For each such prime p there is an automorphism ϕ_p sending \sqrt{p} to $-\sqrt{p}$ and fixing the other zeros. Since there are 8 primes in S, $G = C_2^8$.

(b) (10 points) How many subgroups of index 2 does G have?

Solution: Each such subgroup is the kernel of a nontrivial homomorphism $\chi : G \to C_2$. Each such homomorphism is determined by its behavior on the eight ϕ_ps, and $\chi(\phi_p)$ has two possible values for each prime p. Hence there are 2^8 such homomorphisms including the trivial one, so there are 255 subgroups of index 2.

(c) (10 points) Identify the subfields of E fixed by these subgroups.

Solution: Let $P = \prod_{p \in S} p$, the product of all the primes under 20, also known as 9,699,690. It has 255 divisors other than 1, one for each nonempty subset of S, the divisor being the product of the primes in the subset. Call this set of divisors D. Then our collection of subfields is

$$\left\{ \mathbb{Q}(\sqrt{d}) : d \in D \right\}.$$

You may think of another description.