Def A covering is a map \(\phi : \tilde{X} \to X \) s.t.
each \(x \in X \) has a neighborhood \(U \) s.t.
\(\phi^{-1}(U) \cong U \times D \) where \(D \) is discrete. We
say \(U \) is evenly covered by \(\phi \).

Examples:
1. \(X = \mathbb{R} \times D \) \(\phi = \) projection onto \(\mathbb{R} \)
 \(G = \mathbb{Z} \)
2. \(\mathbb{R} \to S^1 \) \(\phi(x) = e^{2\pi i x} \) \(G = \mathbb{Z} \) acts by
 translation
3. \(S^n \to \mathbb{R}P^n \) \(x \to \) line through \(x \) and 0
 \(G = \mathbb{Z}_2 \) acts antipodally
\(\mathbb{I} = \sqrt{3} \sqrt{5} \)

\(\mathbb{G} = \mathbb{C}_5 \)

Diagram:
- \(\mathbb{a} \)
- \(\mathbb{b} \)
- \(\mathbb{c} \)
- \(\mathbb{d} \)
- \(\mathbb{e} \)

\(\mathbb{G} \) acts by rotation.

Diagram:
- \(\mathbb{a}_1 \)
- \(\mathbb{b}_1 \)
- \(\mathbb{a}_2 \)
- \(\mathbb{b}_2 \)
- \(\mathbb{a}_3 \)
- \(\mathbb{b}_3 \)
- \(\mathbb{a}_4 \)
- \(\mathbb{b}_4 \)
- \(\mathbb{a}_5 \)
- \(\mathbb{b}_5 \)
- \(\mathbb{a}_6 \)
- \(\mathbb{b}_6 \)
- \(\mathbb{a}_7 \)
- \(\mathbb{b}_7 \)

Diagram:
- \(\text{Thin 1-30} \)
- \((Y, y_0) \times \mathbb{I} \) to \((\bar{X}, \bar{x}_0) \) via covering map
- \(\text{making the diagram commute} \)
- \(\text{incluent} \)
Con $\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(X, x_0)$ is 1-1.

HOMOTOPY LIFTING PROPERTY.

Def. A **graph** is a 1-dimensional CW-complex, i.e., a space with a discrete set of vertices connected by edges.

Cycle

A **tree** is a graph without cycles.

Think of I be a path-connected graph.
with d_0 vertices and d_1 edges. ($d_1 = d_0 - 1$)

Let $d = d_0 - d_1 \leq 1$. Then

$\pi_1 (X) = F_{1-d} = \text{free gp on } 1-d \text{ generators}$

Lemma The above is true for $d_0 = 1$.

Proof

$d_0 = 1$ \hspace{1cm} $1 - d = 5$ \hspace{1cm} Use von Kämpen Theorem. QED

$d_1 = 5$

Proof of theorem We can construct a tree T_{CX} that contains each vertex of X.
1) Pick a vertex \(v_0 \).
2) Pick an edge meeting \(v_0 \) and call the other vertex \(v_1 \).
3) Pick an edge containing \(v_0 \) and \(v_1 \) and leads to another vertex \(v_2 \).
4) Repeat until we run out of vertices.

A maximal tree above is shown in black. Consider the space \(X/\Gamma \). It is a graph with 1 vertex, so the lemma applies and we
Claim the map \(x \rightarrow x/T \) is a homotopy equivalence. This means \(\pi_1(x) = \pi_1(x/T) = \text{free gp of right rank} \). QED

An: For each \(n > 0 \), \(F_n \) has a rank of \(n \).
Proof: Generalize 4 above. QED

Will prove the following:

Then let A be a path connected (satisfying a hypothesis to be named later) with $\pi_1 X = G$. Then for each subgroup $H \leq G$ there is a covering $\tilde{x}_H \rightarrow \tilde{X}$ with $\pi_1 (\tilde{x}_H) = H$ and \tilde{x}_H path connected. Each path town covering of \tilde{X}
is isomorphic to one of these. Moreover, for \(H_1 < H_2 < G \), then we have coverings

\[X_{H_1} \xrightarrow{b_1} X_{H_2} \xrightarrow{b_2} X_G. \]

If \(H \) is a normal subgroup of \(G \), then \(G/H \) acts on \(\hat{X} \) with orbit \(\hat{X} = \bigcup_{gH} g\hat{X} \).

Conjecture \(\hat{X} = \hat{X}_e \). Then \(G \) acts on \(\hat{X} \).
with $X/G = X$, and for each $H \subset G$,

$X/H = X_H$.

Def X is the universal cover of X.

Analogies with Galois theory

$k = \text{field}, \ K = \text{algebraic closure of } k$

$G_\alpha = \text{Gal}(K/k)$. There is a 1-1

correspondance between subfields of K

containing k and subgroups of G.
with $L = K^H = \text{subfield fixed by } H$.

If H is normal in G, then $G/H = \text{Gal}(L, k)$.

Covering spaces \tilde{X}. $\tilde{X}_H = \tilde{X}/H$. $G = \pi_1(\tilde{X})$.

$\tilde{X}_H = \tilde{X}/H$. $G = \pi_1(\tilde{X})$.

\tilde{X}.
Def: A topological space is locally pretty if each nbd U of each $x \in X$ has a pretty subneighborhood.

Def: A space is semi-locally simply connected if each nbd U of each $x \in X$ has a subneighborhood W s.t. $\pi_1(W) \to \pi_1(X)$ is trivial.