Recall a covering is a map \(\tilde{X} \xrightarrow{\tilde{p}} X \) s.t. for each \(x \in X \) there is a nbhd \(U \) s.t. \(\tilde{p}^{-1}(U) \cong U \times D \) for a fixed discrete space \(D \).

We can relax this condition by allowing \(D \) to be any topological space.

Examples

1) \(X = D \times \bar{D} \) and \(\tilde{p} = \tilde{p}_2 \) projection to second factor.

2) The Hopf map \(S^3 \xrightarrow{\tilde{p}} S^2 \) with \(\tilde{p}^{-1}(x) \cong S^1 \) for every \(x \in S^2 \). \(\tilde{p}^{-1}(U) \cong S^1 \times U \) for any arbitrary subset \(U \subset S^2 \).
Given two open sets U_1 and U_2 with $U_1 \cap U_2 \neq \emptyset$, we have:

$$U_1 \times D \xleftarrow{a} a(U_1) \xrightarrow{\pi_1(U_{12})} \pi_1(U_2) \rightarrow \pi_1(U_2) \rightarrow U_2 \times D$$

$$U_1 \xleftarrow{\text{inclusion}} U_1 \cap U_2 \rightarrow U_2$$

$$U_{12} = U_1 \cap U_2 \rightarrow U_2$$

$$U_{12} \times D \xleftarrow{h_1} h_1(U_{12}) \xrightarrow{\pi_1(U_{12})} \pi_1(U_{12}) \rightarrow \pi_1(U_{12}) \rightarrow U_{12} \times D$$

$$(x, d) \rightarrow (x, h_1(d))$$

where h_1 is a homeo on D.

This data determines the space X.

X
We saw in the case of coverings it often happens that \(D = G/H \) where \(G = \prod_{i} X_{i} \) and \(H = \prod_{i} X_{i}^f \) and each \(x_i \) is given by left-null by some element in \(G \). The structure data is a continuous map \(U_1 \cap U_2 \to G \).

Change of notation

\[p'(x) = \begin{array}{ccc}
F & \to & B \\
\downarrow & & \downarrow \\
F' & \to & B' = \text{base space} \\
\end{array} \]

Fibers total space

Let \(\phi(t) \) be the homeomorphism of \(F_1 \), so we have structure maps \(U_1 \cap U_2 \to \phi(t) \). It may be the case that \(\phi(t) \) has a subgp \(G \) that always the target of \(G \).
Def: An *n*-dimensional real vector bundle over \(\mathbb{R}^n \) is a fiber bundle with fiber \(\mathbb{R} \) and structure group \(\text{GL}_n(\mathbb{R}) \). i.e., given two overlapping nbds \(U_i \) and \(U_j \), the map \(U_i \cap U_j \to \text{GL}_n(\mathbb{R}) \). Can also define complex vector bundles.

Example: \(B = \mathbb{R}P^m \), \(E = \mathbb{R}^m - \{0\} \) and \(\pi : E \to B \) by line through \(-1 \) and \(0 \). So \(\pi^{-1}(x) = \text{all of } \mathbb{R} \). Want to change this to \(\pi^{-1}(x) = \mathbb{R} - \{0\} \).
Instead let $E = \{ (x, l) \in \mathbb{R}^{n+1} \times \mathbb{RP}^n : x \in L \}$ where L is a line and define \[p(x, l) = l \] Then $p^{-1}(l) = L \subset \mathbb{R}$.

This is the tautological (or canonical) line bundle $(\mathbb{RP}^n, \mathbb{A})$ has structure \[O(1) = \{ \xi \in \mathbb{F} \} \] i.e. $E \neq \mathbb{R} \times \mathbb{RP}^n$

where $E' = \{ (x, l) \in \mathbb{R}^{n+1} \times \mathbb{RP}^n : x \in L^\perp \}$

\[E \subset \mathbb{R}^{n+1} \times \mathbb{RP}^n \subset E' \]

orthogonal complement of \mathbb{R}^{n+1}
The 3 spaces E, E' and $\mathbb{R}^{n+1} \times \mathbb{RP}^n$ are vector bundles over \mathbb{RP}^n with fibers of dimensions 1, n and $n+1$. Note that over any $x \in \mathbb{RP}^n$, the fiber \mathbb{R}^{n+1} is the direct sum of those in E and E'.

Def. An orthogonal n-dimensional vector bundle \overline{E} is a fiber bundle with fiber \mathbb{R}^n and structure group $O(n)$.

Two related fiber bundles of interest:

1) There is a S^{n-1}-bundle associated with \overline{E}. If \overline{E} is the line bundle
over \mathbb{RP}^n above, its unit sphere bundle has total space S^n.

2) There is a \mathbb{B}^n bundle associated with \mathbb{S}. If \mathbb{S} = line bundle over \mathbb{RP}^1, the unit disk bundle has total space a Möbius band.

3) Let $\pi \rightarrow X$ be a space with an $O(n)$-action. Then associated to \mathbb{S} is a fiber bundle $\pi \rightarrow \mathbb{B}$ with fiber F.

Def: The **Stiefel manifold** $V_{n,k}$ is the set of orthonormal k-tuples of vectors in \mathbb{R}^n.

It is also the space of $(\mathbb{1}^{k,n})$-matrices.
over \mathbb{R} with orthonormal row vectors. $O(n)$ acts by right multiplication $V_{n,k} = O(n)/O(n-k) = \text{coor space}$

ii) The Grassmann manifold $G_{m,k}$ is the space of k-planes through 0 in \mathbb{R}^n.

\[e.g., \mathbb{RP}^n = G_{m,1} \]

Remarks. There is a map $V_{n,k} \xrightarrow{\text{diff.}} G_{m,k}$.

It is a fiber bundle with fiber $O(k)$. $O(k)$ acts on the space $V_{n,k}$ of $(k \times n)$ matrices by left multiplication.
hence \(\mathcal{E}_{m;j,k} = O(n)/O(k) \times O(n-k) \).

Let \(M^n \) be a smooth manifold.

with an embedding \(M^n \hookrightarrow \mathbb{R}^{m+k} \).

Hence we get a map \(M^n \rightarrow \mathbb{R}^{m+k, n} \).

\(X \mapsto \) \(m \)-plane parallel to the tangent space at \(X \).

There is a canonical \(\mathbb{R}^n \)-bundle over \(\mathbb{R}^{m+k, n} \). Its total space is

\[E = \{(V, X) \in \mathbb{R}^{m+k} \times \mathbb{R}^{m+k, n} \} \]
pullback $= \mathcal{P} \xrightarrow{\pi} E \xrightarrow{\pi} (x, \xi)$

$M^n \xrightarrow{\phi} G_{m+k, n}$

$m \xrightarrow{\pi} \text{tangent plane of } m$

$P = \{ (m, e) \in M \times E : f(m) = f(e) \}$

P is an \mathbb{R}^n-bundle over M.