Theorem 1.7 \(\pi_1(S^2) = \mathbb{Z} \)

This follows from

\[
\begin{aligned}
Y \times \mathbb{R}^2 & \rightarrow X \\
\pi \downarrow & \quad \downarrow p \\
Y \times I & \rightarrow X \\
\end{aligned}
\]

Last time: Each \(y \in Y \) has a nbhd \(N \) such that \(\tilde{F} \) can be constructed on \(N \times I \).

To show \(\tilde{F} \) is unique on \(\tilde{x}y \tilde{z} \times I \):

Assume we have 2 liftings \(\tilde{F} \) and \(\tilde{F}' \).

Choose a partition of \(I = [0,1] \)
\[0 = t_0 < t_1 < \cdots < t_m = 1 \]

\(F(y; t_i, t_{i+1}) \) is some \(U_i \subset X \)

Assume inductively that \(\bar{F} \) and \(\bar{F}' \)

agree on \(y \times [t_0, t_1] \). Then \(\bar{F}(y; t_i, t_{i+1}) \)
and \(\bar{F}'(y; t_i, t_{i+1}) \) both lie in the

same copy of \(U_i \) in \(X \). \(\bar{F} \) is \(\bar{F}' \) on this

copy of \(U_i \), so \(\bar{F} \) and \(\bar{F}' \) agree on

\(y \times [t_i, t_{i+1}] \). This is inductive step.

\(\bar{F} \) on \(N \times I \) is unique on \(y \times I \) for each \(y \in \mathbb{N} \)
and hence unique on all of \(N \times I \).

For 2 intersecting sides \(N \) and \(N' \) with

\(N \cap N' \neq \emptyset \), \(\bar{F} \) is unique on \((N \cap N') \times I \)
and hence on $(N \cup N') \times I$.

It follows that π is unique on the whole space $Y \times I$. QED

This completes the proof of 1.7, that

$\Pi_1 \leq \leq 2$.

Remark: Suppose we relax the definition of covering by not requiring D to be discrete. Then $\tilde{X} \rightarrow X$ is said to be a fiber bundle with fiber D. Then we can construct F as before, but not uniquely.
A fibration is any map \(X \rightarrow Y \) for which \(\mathcal{F} \) can always be constructed. More about this later.

Recall the **Fundamental Theorem of Algebra** (due to Gauss):

If \(p(z) \in \mathbb{C}[z] \) is not a constant,

then it has a complex root \(z \)

\[p(z) = 0 \quad \Rightarrow \quad p(z) = (z - z_0) q(z) \]

Topological Proof

Let \(p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \), with \(a_n \neq 0 \).

Assume \(p(z) \) has no root. For \(m \geq 0 \)
Let \(f_m(s) = \frac{\phi(m e^{2\pi i s})}{\phi(m)} \in S^1 \) for \(0 \leq s \leq 1 \).

This is a closed path on \(S^1 \) that varies continuously with \(m \).

It is constant if \(m = 0 \).

We will show that for \(m > 0 \), the path is homotopic to \(\omega_n : s \mapsto e^{2\pi i m s} \).

Choose \(M > |a_1| + |a_2| + \cdots + |a_n| \). Then for \(|z| = M \),

\[
|z^n| = |z|^{n-1} > (|a_1| + \cdots + |a_n|) M^{n-1} \\
\geq |a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n|
\]

Let \(\phi_x(z) = z^n + x (a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n) \) for \(0 \leq x \leq 1 \),
Note \(\phi_0(z) = z^n \) and \(\phi_1(z) = \phi(z) \).
\(\phi_0(z) \) has no roots \(z \) with \(|z| > m \).
This means \(f_m \cong f_0 \) and \(f_m \cong w_m \).
Hence by the previous Theorem, \(m = 0 \), CONTRADICTION. QED