Brouwer Fixed Point Theorem (1910)

Any map \(D^2 \to D^2 \) has a \(p \) such that \(p \in D^2 \) with \(f(p) = p \).

Proof: Assume \(f \) as above.

Define a map \(g : D^2 \to S^1 \) as shown.

\[
S^1 \hookrightarrow D^2 \xrightarrow{g} S^1
\]

Hence \(g \) extends the identity map \(S^1 \).

Consider the homotopy \(h : S^1 \times I \to S^1 \)

\[
h(x^1, t) = g(tx^1)
\]
\[
\begin{align*}
(x, 1) & \rightarrow x \\
(x, 0) & \rightarrow g(x)
\end{align*}
\]

If \(g \) is a null homotopy for \(I_{S^1} \), \textit{CONTRACTION} becomes \(\pi_1(S^1) = \mathbb{Z} \) and \(I_{S^1} \) is essential, i.e. not homotopic to constant map. QED

We could prove a similar thing about \(D^n \) if we knew that \(S^{n-1} \rightarrow S^n \) is essential. We will see this later.

\[\pi_n(S^{n-1}) = \mathbb{Z} \text{ for all } n > 0. \]

Thm 1.10 (Borsuk-Ulam) Borsuk-Ulam \(S^2 \rightarrow \mathbb{R}^2 \)

\[\exists x \in S^2 \text{ with } g(x) = g(-x). \]

Proof: Assume \(g \) as above.
Let \(g(x) = \frac{f(x) - f(-x)}{2} \in S^{1} \)

I \(\eta \rightarrow S^{2} \xrightarrow{\mu} S^{1} \) and \(g(-x) = -g(x) \)

\(\eta(x) = (\cos 2\pi x, \sin 2\pi x, 0) \in S^{2} \subset \mathbb{R}^{3} \)

Path around equator.

\(\tilde{h} \rightarrow (\mathbb{R}, r_{0}) \) \quad \tilde{h}(x + \frac{1}{2}) = -\tilde{h}(x) \)

\((1, 0) \rightarrow (S^{1}, r_{0}) \) for an odd integer \(q \).

\(\tilde{h}(1) = \tilde{h}(\frac{1}{2}) + q/2 = \tilde{h}(0) + q/2 + q/2 \)

\(= r_{0} + q \) with \(q \neq 0 \)

\(\tilde{h} \) defines a nontrivial elt \(\tilde{h} \in \pi_{1}(S^{1}) = \mathbb{Z} \)

Since \(g \) extends to the northern hemisphere, \(\tilde{h} \) must be null. \textbf{CONTRACTION.}

QED.
Generalization to higher dimensions is more complicated, but true.

Cor (Ham Sandwich Theorem)

Given 3 compact subsets of \mathbb{R}^3, there is a plane which intersects each of them.

If: Each oriented plane has a unit normal vector corresponding to a bit in S^2. Each plane is parallel to one which intersects K_i.

For each bit on S^2 we have such a plane.

Define $S^2 \rightarrow \mathbb{R}^2$.
\[K_i^\pm = \text{portion of } K_i \text{ above the plane} \]

\[K_i^- = \text{part below} \]

\[f(x) = \left(\text{vol}(K_2^+) - \text{vol}(K_2^-) \right) \cdot \text{vol}(K_i^+) - \text{vol}(K_i^-) \]

Assume that \(f(x) \neq (0,0) \) for all \(x \).

Note \(f(-x) = -f(x) \).

\[g(x) = \frac{f(x)}{[f(x)]} \in S^1 \]

\[g(-x) = -g(x) \]

Such a map cannot exist. QED.

Van Kampen Theorem.

\[X = A \cup B, \quad A, B \quad \text{s.t.} \quad A \cap B \quad \text{is path connected} \]

\[x_0 \in A \cap B. \quad \text{Suppose we know} \]
Abstract definition. A pullout in a category \mathcal{C} for the diagram

\[
\begin{array}{ccc}
K & \xrightarrow{i} & P \\
\downarrow & & \downarrow \text{id}
\end{array}
\]

is an object P with morphisms as shown.
with the following universal property.

For any \((X, i, j)\) as shown with \(id = j\beta\),

\[\exists ! \ g : P \rightarrow X \text{ with } g \circ i = i \text{ and } g \circ j = j. \]