Toward a proof that the free gp \(F_2 \) has \(F_n \) as a sub-gp.

A graph is a top. space consisting of edges + vertices

\[
\begin{align*}
\text{n}(X) &= \# \text{ of vertices} \\
\text{e}(X) &= \# \text{ of edges}
\end{align*}
\]

\[x(X) = \text{n}(X) - \text{e}(X) \]

Thm: If \(X \) is a path connected finite graph then its homotopy is determined by
\[d = X(X), \text{ it is homotopy equivalent to one with a single vertex and } \]

1-d edges, \(X \cong S^1 \vee S^1 \vee \ldots \vee S^1 \)

\[\text{1-d circles.} \]

\[\text{d = 1 tree} \]

\[\text{Thin } \check{\pi}_1(\tilde{X}) \xrightarrow{\phi} \pi_1(X) \text{ is a covering with } \tilde{X} \text{ and } X \text{ path connected, then } \]

\[\pi_1(\tilde{X}) \text{ is iso via } \phi \text{ to a subgroup of } \pi_1(X). \]
\[\chi(X) = 3 - 6 = -3 \]

\[\chi(\tilde{X}) = 1 - 2 = -1 \]

\[\pi_1(\tilde{X}) = \mathbb{F}_2 \]

4 generators map to:

\[\alpha_1 \mapsto b \]
\[\alpha_2 \mapsto a b \alpha^{-1} \]
\[\alpha_3 \mapsto a^2 b \alpha^{-2} \]
\[\alpha_4 \mapsto a^3 \]

Remark: If \(\tilde{X} \rightarrow X \) is a covering
of path connected finite graphs, then $X(\hat{X})$ is divisible by $X(x)$.

For a nice path connected space X, (with $\tilde{\pi}_1 X = G$) has a path covering \tilde{X} with $\tilde{\pi}_1 \tilde{X} = 0$. There is an action of G on \tilde{X}, i.e., for $g \in G$ there is a homeomorphism $\hat{g} : \tilde{X} \to \tilde{X}$ with $\hat{0}(gg') = \hat{g} \hat{g}'$.

2. $g(x) = x \iff g = e$. The action is free.

3. $\tilde{X}/G = \tilde{X}$ where \tilde{X}/G is
The orbit space. Each $x \in X$ defines a subset $G \cdot \{x\}$, called its orbit. An orbit is an equivalence class $x \sim x'$ if $x' = g(x)$ for some $g \in G$.

Let H be a subgroup of G. Then we have $\tilde{X} \sim X/H$, where each $\tilde{X} \sim X/G$ maps is a covering $\pi_1(\tilde{X}/H) = H$.

Any path-connected cover of X is \tilde{X}/H for some $H \subset G$.
An analogy between coverings and Galois theory.

universal cover \(\tilde{X} \)

intermediate covering for \(H \subset G \)

nice path compact space with \(G = \pi_1(X) \)

\(K = \bar{K}_G \)

field extension \(L = \bar{K}_H \)

intermediate field \(H \subset G \)

\(\bar{K}_H = \text{fixed part of } H = \{ x \in \bar{K} : h(x) = x \text{ for } h \in H \} \)
Theorem 1.30 \(\pi_1(Y, x_0) \rightarrow \pi_1(Y) \rightarrow X \)

covering

\[Y \times I \rightarrow Y \]

Suppose \(\pi_1(Y) = G \), \(\pi_1(X) = G \), and both spaces are path conn.

To define \(\hat{g}(x) \) for \(x \in X \) and \(g \in G \):

Choose a closed path in \(X \) based at \(p(x) \) corresponding to \(g \in G \):

\[\pi_1(X, p(x)) \simeq G \]. Lift it to \(Y \).

We get a path from \(x \) to another
At, which we define to be \(g'(x) \). The Thom implies depends only on \(g \) and \(x \) and not on the path chosen. Varying the path in \(X \) by a homotopy will not change the end point of its lifting.

THERMOPYLAE 480 BC