$S^3 \to S^2 \to S^2 \vee \mathbb{C}P^2 = \mathbb{C}P^2$ HOPF map

$S^3 \to S^2 \to S^2 \vee S^4 = W$ trivial map

$H^* W$ and $H^* \mathbb{C}P^2$ are the same as graded abelian groups but not as graded rings

Given an arbitrary map $S^3 \to S^2$, we can form its mapping cone $C_0 > S^2 \vee C S^3 = S^2 \vee \mathbb{C}P^2$.
\[H^i(G, \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } i = 0, 2, 3, 4 \\ 0 & \text{else} \end{cases} \]

Let \(\chi \in H^2 \) and \(y \in H^4 \) be generators. Then \(\chi^2 = h(g) y \in H^4 \) for some \(h(g) \in \mathbb{Z} \).

\(h(g) \) is defined up to sign.

\(h(g) \) is called the Hopf invariant of \(g \). It defines a map

\[\pi_2 \colon S^2 \to \mathbb{Z}, \quad \text{It is in fact an isomorphism.} \]
A generalization:

\[s^{4n-1} \rightarrow s^{2n} \quad C_g = s^{2n} \cup e^{4n} \]

\[H^i C_g = \begin{cases} 2 & \text{for } i = 0, 2n, 4n \\ 0 & \text{else} \end{cases} \]

We can define the Hopf invariant \(h(g) \) as above.

Remark: Consider

\[s^{4n-3} \cup s^{2n-1} \]

for some \(n \geq 1 \)

\[C_g = s^{2n-1} \cup e^{4n-2} \]

\[H^i C_g = \begin{cases} 2 & \text{for } i = 0, 2n-1, 4n-2 \\ 0 & \text{else} \end{cases} \]
Let \(x \in \mathbb{Z}^{n+1} \) and \(y \in \mathbb{Z}^{4n-2} \) be generators. Because of the sign issue, \(x^2 = -x^2 \in \mathbb{Z}^{4n-2} \), hence \(x^2 = 0 \) and we get no information about \(g \).

Back to \(S^{4n-1} \rightarrow S^{2n} \). We get a hom \(\pi_{4n-1} : S^{2n} \rightarrow \mathbb{Z} \). It is not an isomorphism for \(n \geq 1 \).

Question: What is its image? Two known facts:
(1) For $n = 1, 2, 4$, it is onto, i.e., a map with Hopf invariant 1. They were constructed by Hopf in 1930.

For $n = 2$, replace \mathbb{C} by the quaternion \mathbb{H}, a noncommutative division algebra additively isomorphic to \mathbb{R}^4.

For $n = 4$, replace \mathbb{C} by the octonions \mathbb{O}, a nonassociative division algebra isomorphic to \mathbb{R}^8.

CAYLEY NUMBERS
(2) For all $n > 0$, there is a map $S^{4n-1} \lor S^{2n} \to S^{2n}$ with Hopf invariant 2.

Consider $S^{2n} \times S^{2n}$. It has a CW structure with two $2n$-cells and one $4n$-cell. The attaching map for the latter is $S^{4n-1} \lor S^{2n} \to S^{2n} \lor S^{2n}$.

\[g \quad \text{fold} \quad S^{2n} \]

Claim: $H(g) = 2$.
let x and y be the gens of $H^{2n}(S^{2n} \times S^{2n})$. Then $H^{4n}(S^{2n} \times S^{2n}) = \mathbb{Z}$ is generated by xy. Can show $x^2 = y^2 = 0$ using the maps $S^{2n} \times S^{2n} \xrightarrow{p_1 \times p_2} S^{2n}$ where $x \in \text{Im } p_1^*$ and $y \in \text{Im } p_2^*$.
Hence the same is true of x^2 and y^2 and $H^{4+n} S^{2n} = 0$. This determines $H^* (S^{2n} \times S^{2n})$ as a graded ring.

\[x + y \]

\[S^{2n} \vee S^{2n} \xrightarrow{i} C_b = S^{2n} \times S^{2n} \]

\[\text{fold} \]

\[S^{2n} \xrightarrow{j} C_g = S^{2n} \cup g \cdot e^{4-n} \]

\[\text{fold} \]

\[(x+y)^{2n} \]

\[w^{2n} \cup w^{2n} \wedge w^{2} \cup w^{2} \cdot e^{4-n} \]

The fold map induces an iso in H^{4+n}.
In \(H^4(S^{2n} \times S^{2n}) = \mathbb{Z} \) generated by \(xy \)

\[(x+y)^2 = x^2 + 2xy + y^2 = 2xy\]

This implies \(H_4(g) = 0 \).

Hence we have a lower bound on the image of \(\tilde{H}_{4n-1}(S^{2n}) \rightarrow \mathbb{Z} \).

It is onto for \(n = 1, 2, 3, 4 \).

It has index \(\leq 2 \) for other \(n \).

Thm (J. F. Adams 1961) There is no map of Hopf invariant 1.
for $n \neq 1, 2, 4, 8$. DEEPCON: There is no division algebra structure on \mathbb{R}^m for $m \neq 1, 2, 4, 8$.

New topic: Poincaré Duality

Recall a n-manifold M^n is a topological space in which each point has a nbd $\cong \mathbb{R}^n$. A manifold with boundary is \mathbb{R}^n.
a smooth \(M \) in which each \(x \in M \) is as above \(\mathbb{R} \) has a nbhd homeo to "1/2 of \(\mathbb{R}^n \)"

\[
\mathbb{Q} = \{ (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_n = 0 \}\]

A manifold is closed if it is compact and has no boundary.

Let \(M \) be a closed path connected \(n \)-mfd. It is a CW-ax with cells in dim \(\leq n \).

Known examples:
\(\pi_i, i \geq 0 : S^n \times S^n \) surface of genus \(g \),

\(\mathbb{C}P^{n/2}, \mathbb{R}P^n \), Klein bottle, \(n \) even.

In each case \(H_n(M) = \mathbb{Z} \) or \(0 \),

e.g., \(H_2 \mathbb{R}P^2 = 0 \) and \(H_2 KB = 0 \).

This is related to orientability. \(\mathbb{R}P^2 \) and \(KB \) are not orientable.

Let \(M^n \) be a closed orientable path, \(m \).
Thm (Poincare duality)

1) \(H^i(M,\mathbb{Z}) \cong H_{n-i}(M,\mathbb{Z}) \)
e.g. \(H^0(M,\mathbb{Z}) = \mathbb{Z} \). This implies \(H_m(M,\mathbb{Z}) = \mathbb{Z} \) via UCT.

2) Let \(x \in H^i(M) \) \(B \in H^j(M) \) with \(i + j \leq n \). \(\alpha \beta \in H^{i+j}(M) \cong H^{n-i-j}(M) \).

We have elements \(\alpha \in H_{n-i}(M) \) and \(\beta \in H_{n-j}(M) \).

Suppose there are represented by submanifolds of dimo \(n-i \) and \(n-j \) (codimensions \(i \) and \(j \)?)
Then their intersection refe
an element, \(c \in H_{n-1-y}(M) \)
\(c \) is Poincaré dual to \(\alpha \beta \)