Prop 2.21 For an open covering U there are \(C^U(X) \xrightarrow{\subset} C(X) \).

\(L \) is the obvious inclusion and \(\varphi \) will be defined later.

```
small simplices suffice
```

Proof. Define the subdivision operator

\[
C^n(X) \xrightarrow{S} C^{n+1}(X)
\]

\(6 \rightarrow \) sum of \((n+1)\)! smaller simplices from nonconstant subdivision
This can be shown to be a chain homotopy equivalence (see pages 121–123).

Let U be an open cover of X.

Define $\Delta^n \hookrightarrow X$, we get an open covering of Δ^n by the U_i. Since Δ^n is compact, it is covered by finitely many such open sets. If we subdivide Δ^n $m(\delta)$ times (for $m(\delta)$ large enough) and each little simplex is contained in some U_i.
Let \(C_n(x) \xrightarrow{D_m} C_{n+1}(x) \) be a chain homotopy between \(S_m \) and \(1_c(x) \).

Want to define \(C(x) \xrightarrow{D} C(U(x)) \). We will do so by defining a chain homotopy \(S \) between \(p \) and \(1 \).

\[
\begin{align*}
C_n(x) & \xrightarrow{D_m} C_{n+1}(x) \\
(\Delta \circ x) & \xrightarrow{D_m(x)} D_m(x)
\end{align*}
\]

\(D \) determines the chain map \(p \).
To prove 2.11 we need to show both
1. \(C^U(X) \xrightarrow{\varepsilon} C(X) \xrightarrow{\varphi} C^U(X) \)
and 2. \(C(X) \xrightarrow{\varphi} C^U(X) \xrightarrow{\eta} C(X) \)
are chain homotopic to the identity,
1. \(\varphi \) is the identity on \(C^U(X) \).
2. \(\varepsilon \) is a chain homotopy between \(L \varphi \) and \(1_{C(X)} \).

QED.

Historical note

By 1910 spaces had “Betti numbers.”
For a space \(X \), \(B_n(X) \) is the # of free abelian summands in \(H_n(X) \).
e.g. for a surface X of genus g, $\beta_1(X) = 2g$.

Question: How to describe $H_*(X \times Y)$ in terms of $H_*(X)$ and $H_*(Y)$?

Theorem: $\pi_n(X \times Y) = \pi_n(X) \oplus \pi_n(Y)$ for path-connected X and Y.

Sketch of proof:

This is a pullback diagram:

$$
\begin{array}{ccc}
X \times Y & \to & Y \\
\downarrow & & \downarrow \\
X & \to & X
\end{array}
$$
i.e. given maps $f, g \in \mathcal{F} \setminus \mathcal{H}$,

$\exists h: W \to X \times Y$

making the diagram commute

$h(w) = (f(w), g(w))$

For $W = S^n$, f, g and h represent elements

in $\pi_n(X)$, $\pi_n(Y)$ and $\pi_n(X \times Y)$.

The third is uniquely determined by the first + second. QED

However $\pi_n(X \times Y) \neq \pi_n(X) \otimes \pi_n(Y)$

in general, e.g. $X = Y = S^3$, $n = 2$.
$$H_2(S^1) = H_2(S^4) = 0$$

but $$H_2(S^1 \times S^4) = H_2(\text{torus}) \neq 2$$

Related question:

Given two chain complexes $$C'$$ and $$C''$$, describe $$H_\bullet(C' \otimes C'')$$ in terms of $$H_\bullet C'$$ and $$H_\bullet C''$$.

To define $$C = C' \otimes C''$$

$$(\sum a_n x_i^i)(\sum b_n x_j^j) = \sum (\sum a_i b_n) x_{i+j}$$

$$C_n = \bigoplus_{i+j=n} C_i \otimes C_j$$
When $x \in C_i^j$ and $y \in C_i^{j'}$ what is $\vartheta(x \otimes y) = \vartheta'(x) \otimes y + x \otimes \vartheta''(y) \otimes \\
\in C_i^{j'} \otimes C_i^{j''} \otimes C_i^{j'''}$ \\
\subset C_i^{j''''}$

Try this: $\vartheta_2(x \otimes y) = \vartheta_2'(x) \otimes y + x \otimes \vartheta_2''(y) \otimes \\
\in C_i^{j-1} \otimes C_i^{j''} \otimes C_i^{j'''} \otimes C_i^{j''''}$

Then $\vartheta_2(x \otimes y) = \vartheta_2'(x) \otimes y + x \otimes \vartheta_2''(y) \otimes \\
= \vartheta_2'(x) \otimes y + \vartheta_2(x) \otimes \vartheta_2''(y) \otimes \\
= 2 \vartheta_2'(x) \otimes y + \vartheta_2(x) \otimes \vartheta_2''(y) \\
+ \vartheta_2'(x) \otimes \vartheta_2''(y) + x \otimes \vartheta_2''(y) \otimes \\
= 2 \vartheta_2'(x) \otimes \vartheta_2''(y) \neq 0 \text{ in general.}$
TAKE 2: \(\mathcal{E}(x \otimes y) = \mathcal{E}(x \otimes y + (i)^2 x \otimes \mathcal{E}''(y)) \)

Then \(\partial \mathcal{E} = 0 \).