Recall we are knowing that $\pi, s' = \pi$. It reduces to

$$\pi \downarrow s' \downarrow \Rightarrow \pi \downarrow s' \downarrow \pi, s' = \pi$$

$$w = (y, y_0) \times (x, x_0) \overset{F}{\longrightarrow} (x, x_0)$$

given i, g, p and F with $p g = F i$

F with $p F = F$ and $F i = g$

Unique path lifting

We need to extend g over the rest of W. Let $w_0 = (y_0, 0)$

Let ω be an overlap current field
of x_0 and let $V_0 = F^{-1}(U_0) \subseteq W$. Let W_0 be a nbhd of x_0, $F^{-1}(U_0) \subseteq D \times U$ for a discrete space D. One copy of U in \mathbb{R} contains x_0. Use that copy to define F on U_0.

$W_0 = \{y_0 \delta\}$

$W \supseteq [0, \delta]$ for $y_0 \in N \cap Y$

and $0 < \delta, \epsilon$ such $W_1 = \{y_0 + \delta\}$
We can make a similar argument on \(X_1 = F(w_k) = F(y_0, x_1) \). It has an evenly covered covering over \(D \) with \(N_1 = F^{-1}(U_k) \). This leads to \(N_2 \times [t_1, t_2] \subset W \) on which we can define \(F \). Continuing in this way, we get \(0 = t_0 < t_1 < t_2 < t_3 \ldots < t_n = 1 \) and make \(N_1 \) of \(y_0 \) so \(F(N_1 \times [t_1, t_2]) \) is evenly covered so we can define \(F \) on \(N_1 \times [t_1, t_2] \). Finally,
ON : [t_{i-1}, t_i] and hence on $N_0 \times I$ where $N_0 = \bigcap_{i=1}^n N_i$.

In a similar way we can extend F uniquely to all of W.

QED

We have shown that $\Pi_1(S^1) \cong \mathbb{Z}$.

Abstract nonsense.

Pointed spaces $\mathcal{K} \\ \Pi_1$ (homotopy)
Given a map \((X, x_0) \to (Y, y_0)\) we get a homomorphism
\[
\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(Y, y_0)
\]
We also have \(\pi_n\) for \(n > 1\) with \(\pi_n(X, x_0)\) in always abelian.

Def: A category \(\mathcal{C}\) *consists of*
1) a collection of objects
2) for each pair of objects
X, Y, a set of morphisms

$X \to Y$

These satisfy certain axioms

Examples

1. Sets and maps between them
2. Top (topological spaces) and continuous maps
3. Ab (Abelian groups) and homomorphisms
Axioms:
1. For each object X there is an identity morphism 1_X.
2. Given morphisms $X \to Y$ and $Y \to Z$, we get a morphism $X \to Z$.
3. Composition is associative.
4. Composition with 1_X behaves as expected.
Let C and D be categories.

A **functor** $F : C \rightarrow D$ consists of:

1. For each object X in C, we get an object $F(X)$ in D.
2. For each morphism $f : X \rightarrow Y$ in C, we get a morphism $F(f) : F(X) \rightarrow F(Y)$ in D.

with $F(fg) = F(f)F(g)$.

A contravariant functor G from C to D assigns to each object X in C an object $G(X)$ in D and for each morphism $f: X \to Y$ in C a morphism $G(f): G(X) \to G(Y)$ in D with $G(f_1 \circ f_2) = G(f_2) \circ G(f_1)$.

Example: Let k be a field.
We have a category Vect_k whose objects are vector spaces V over k and morphisms are linear maps. Let $V^* = \text{Hom}(V, k)$. This defines a contravariant functor $\text{Vect}_k \xrightarrow{\mathcal{D}} \text{Vect}_k$.

\[V \xrightarrow{f} W \quad \Rightarrow \quad V^* = \mathcal{D}(V), \quad W^* = \mathcal{D}(W). \]
Example

Let G be a group and T a set. G is a group if and only if there is a bijection between the free abelian group on T and G. Let A be an abelian group. Let X be a set. A homomorphism $F:X \to A$ is equivalent to a set morphism.
Given objects X, Y in C, let $C(X, Y)$ denote the set of morphisms from X to Y.

In our example:

\[ext{Ab} \xrightarrow{F} \text{free abr.}\]
\[\text{Sets} \]
\[\text{Ab} \xrightarrow{G} \text{forgetful function} \]
\[\text{Ab} \left(F(X), A \right) = \text{Set} \left(X, G(A) \right) \]
F is the left adjoint of G.

G is the right adjoint of F.

Recall $\mathcal{C}(X,Y)$ is the set of morphisms in \mathcal{C} from X to Y. It may have additional structure. Examples:

1. In \mathcal{Ab}, $\mathcal{Ab}(A,B)$ is itself an abelian group.
2. In \mathbf{Top}, $\mathbf{Top}(X,Y)$ has
the compact open topology, so it is an object in \textbf{Top}.

Def. A category \mathcal{C} is enriched over \mathcal{D} if $\mathcal{C}(X,Y)$ is also an object in \mathcal{D} s.t.

A morphism $Y \to Z$ in \mathcal{C} induces $\mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$ in a morphism in \mathcal{D}.

is a morphism in \mathcal{D}.
