Applications of \(\Pi_1(S^1) \rightarrow \mathbb{Z} \)

Fundamental Theorem of Algebra
(Dumas 1801). Let \(p(x) \in \mathbb{C}[x] \)
nonconstant. Then \(\exists z \in \mathbb{C} \) with \(p(z) = 0 \).

This means \(p(x) = (x-z) \cdot p_1(x) \)
if degree \(p(x) \) is \(n \), then deg \(p_1(x) = n-1 \)
\(\Rightarrow p(x) = (x-z_1)(x-z_2)\ldots(x-z_m)C_n \)

Topological proof
Let \(\psi(x) = C_n x^n + C_{n-1} x^{n-1} + \cdots + C_0 \)
with \(C_n \neq 0 \). Assume \(C_0 \neq 0 \) and \(C_n = 1 \), \(\psi \) defines a continuous map
\[C \to S^1. \]
Assume \(0 \notin \text{Im} \psi \)
\[C \to \{0\} \]
Let \(f(x) = \frac{\psi(x)}{||\psi(x)||} \in S^1. \]
Will restrict \(f \) to a circle about 0 of radius \(m \) for various \(m \geq 0 \).
\[f_n(x) = \frac{\psi(ne^{2\pi i x})}{||\psi(ne^{2\pi i x})||} \in S^1. \]
for $0 \leq s \leq 1$. This defines a map $S^1 \to S^1$ representing an element in $\pi_1 S^1 = \mathbb{Z}$. We will show that for small n we get 0 and for larger n we get π.

We have $f(z) = z^n + \sum_{i=0}^{n-1} c_i z^i$.

For small n this is close to $c_0 \neq 0$ so we get f_n is null homotopic.

Choose $M > \sum |c_i|$ then $|z^n| > \sum |c_i| z^{|i|}$.
Let $p_t(z) = z^t + x \sum c_i z^i$ for $0 \leq t < 1$.

Note $p_t(z) \neq 0$ for all t and x.

Let $p_0(z) = z^n$ and $p_1(z) = p(z)$.

Hence $p(z)$ and z^n define homotopic maps $S^t \to S^n$.

CONTRADICTION. QED.

Brouwer Fixed Point Theorem 1910

Let $D^2 \to D^2$. Then $\exists x \in D^2$
with \(f(x) = x \).

Proof. Assume there is no such \(x \).

Will define a map \(\partial D^2 \to S^1 \).

s.t. \(g \partial D^2 \) is the identity.

We can use \(g \) to construct a null homology of \(S^1 \).

\[S^1 \times I \to S^1 \]
\[h(x, t) = g(tx), \quad 0 \leq x \leq 1 \]
\[m(x, 1) = g(x) = x \]
\[m(x, 0) = g(0) \in S^n \]

This contradicts \(\pi_1(S^n) = \mathbb{Z} \)

QED.

Remark: If we prove that the identity map on \(S^{n-1} \) is not homotopic to a constant map, it will follow that any map
$D^n \rightarrow D^n$ has a fixed point.

Theorem 1.10 (Borsuk-Ulam). For any $f: S^2 \rightarrow \mathbb{R}$, there exists $x \in S^2$ with $f(x) = f(-x)$.

Proof. Assume $f(x) \neq f(-x)$ for all x.

Let $g(x) = \frac{f(x) - f(-x)}{|f(x) - f(-x)|} \leq S^2 \rightarrow S^1$.

$g(-x) = -g(x) \leq S^2 \rightarrow S^1$.
Will show there is no map \(g \) as above with \(g(-x) = -g(x) \).

Consider \(\tilde{h}(s, \omega) := \varphi(s) + \omega \) \(\forall 0 \leq s \leq 1 \) \(\tilde{h}(s, \omega) = \tilde{g}(\omega) \) \(\forall \omega \in \varnothing \). Let \(\varnothing \) be the empty set in \(\mathbb{R} \).

\[h(s) = -h(0) \quad \forall s \in (0, 1) \]

\[h(s + 1/2) = h(s) + \omega/2 \quad \text{for some} \]
\(h(15) = h(\frac{1}{2}) + \frac{9}{2} = h(0) + \frac{9}{2} \)

\[\Rightarrow h(0) = \frac{9}{2} \]

This means \(h \) defines a \(+0 \)-elt in \(\pi_1(S^4) \). The equation is essential (not just to constant), but it extends to the southern hemisphere.

CONTRADICTION. \(\therefore \)
We have shown \(g : S^2 \to S^1 \)
with \(g(-x) = -g(x) \).

Ham Sandwich Theorem.

Given 3 compact regions \(K_1, K_2, \text{and} K_3 \) in \(\mathbb{R}^3 \), there is a plane that
bisects all 3.

Proof: Each plane has a unit normal vector. Any plane \(P \)
is parallel to one that bisects \(K_1 \).
Assume P intersects K_1. It is a unit normal vector in \mathbb{R}^2.

$x \in \mathbb{S}^2 \rightarrow \text{plane } P \text{ intersecting } K_1$.

For K_2 and K_3, we look at the volumes lying above and below P.

Hence we get a map $\mathbb{S}^2 \rightarrow \mathbb{R}^2$.

$g(-x) = -f(x)$. We are looking for x with $f(x) = (0,0)$. Assume \exists no such x. Define $g(x) = \frac{b(x)}{|b(x)|} \in \mathbb{S}^1$.
We now have \(g : S^2 \rightarrow S^1 \) with \(g(-x) = -g(x) \). CONTRADICTION

QED

Next: Van Kampen Theorem

Let \(X = A \cup B \) with \(A \cap B, A, B \) and \(X \) all path connected. Let \(x \in A \cap B \) and assume that \(\pi_1(A \cap B), \pi_1(A) \) and \(\pi_1(B) \) are known as are the homomorphisms.
Van Kampen Thm gives a formula for $\pi_1(X)$ in terms of these data.