Another example of Poincare duality:

\[X = \mathbb{R}^n, \quad H_i(x, \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{for } i = n, \\
\mathbb{Z}/2 & \text{for } 0 < i \leq n, \\
0 & \text{else} \quad \text{n odd} \end{cases} \]

PD from integer coefficients applies when \(n \) is odd and says

\[H_i(x, \mathbb{Z}) \cong H_{n-i}(x, \mathbb{Z}). \]
For all n we have mod 2 Poincaré duality:

$$\hat{H}_i(X; \mathbb{Z}/2) = \hat{H}^i(X; \mathbb{Z}/2) \cong \bigoplus_{0 \leq i \leq n} \mathbb{Z}/2 \quad \text{for} \quad n \geq 1$$

So $\hat{H}_i(X; \mathbb{Z}/2) \cong \hat{H}^{n-i}(X; \mathbb{Z}/2) \cong \mathbb{Z}/2$ for $0 \leq i \leq n$.

We also know $\chi^*(\mathbb{RP}^n; \mathbb{Z}/2) = 2/2^5 \chi(X; \mathbb{Z}/2)$

where $X \in \hat{H}_1$.

This means there should be a class $Y \in \hat{H}_{n-1}(\mathbb{RP}^n; \mathbb{Z}/2)$ Poincaré dual to X such that self-intersections of Y are dual to powers of X.
For $n=3$, Y is represented by a linear inclusion $\mathbb{R}P^3 \hookrightarrow \mathbb{R}P^3$

\[
[a, b, c] \mapsto 2a [a, b, c, 0] + b^2 [a, b, 0, c] + c^2 [a, 0, b, c]
\]

The intersection of these two is $\mathbb{R}P^1 = \{ [a, b, 0, 0] : a^2 + b^2 = 0 \} \subseteq \mathbb{R}P^3$, representing a class in H_1 dual to x^2.

For the 3-fold self-intersection, let $[a, b, c] \mapsto [a, 0, b, c]$

The intersection of the 3 images is

\[
\{ [a, 0, 0, 0] : a \neq 0 \} \cong \mathbb{R}[0, 0, 0]
\]
The representation of the element in H_3 dual to the generator $X^3 \in H_3$.

This can be generalized to the n-dimensional case and to the complex case. Modulo Poincaré Duality, this proves that $H^*(\mathbb{R}P^n; \mathbb{Z}/2)$ and $H^*(\mathbb{C}P^n; \mathbb{Z})$ have the stated ring structures.

New topic: Fiber bundles

Recall a covering $\tilde{\mathcal{X}} \to \mathcal{X}$ is a map

such that each $\tilde{x} \in \tilde{\mathcal{X}}$ has a neighborhood U with

$p^{-1}(U) \cong \mathcal{X} \times D$ where D is discrete.
In a fiber bundle we replace \(D \) by some space \(F \) called the fiber of \(p \). We will denote this by

\[
\begin{align*}
F & \xrightarrow{\pi} E & \xrightarrow{p} B &= \text{base space} \\
\text{fiber} & \xrightarrow{\pi} \mathcal{X} & \xrightarrow{\pi} X &= \text{total space}
\end{align*}
\]

For each \(b \in B \), \(p^{-1}(b) \approx F \).

Example

1) \(E = F \times B \) and \(p = \pi_2 \): projection onto second factor. Trivial example.

2) \(F = \) any covering of \(B \), \(F \) indiscrete.

3) The Hopf mapping.
4. Let G be a topological group, e.g., a Lie group. Let $K \subset H \subset G$ be closed subgroups, not necessarily normal.

Then the maps

$$H/K \rightarrow G/K \rightarrow G/H$$

are exact at H/K.

This is a fiber sequence, i.e., $p^{-1}(x) = H/K$ for each $x \in G/H_0$.
Each of the examples in \mathbb{B} has this form.

Def: An \mathbb{IR}^n-bundle over a space \mathbb{B} is a fiber bundle with base \mathbb{B} and fiber \mathbb{IR}^n, such that given 2

inads U_1 and U_2 with homeomorphisms

$h_1: \beta^{-1}(U_1) \to U_1 \times \mathbb{IR}^n$ and $h_2: \beta^{-1}(U_2) \to U_2 \times \mathbb{IR}^n$

with $U_1 \cap U_2 = W
eq \emptyset$, the composite

$W \times \mathbb{IR}^n \xrightarrow{h_2^{-1}} \beta^{-1}(W) \xrightarrow{h_1} W \times \mathbb{IR}^n$

$(w, x) \mapsto (w, \beta_w(x))$
in such that \(f \) is linear on \(\mathbb{R}^n \).

Example Let \(M \) be a smooth manifold embedding \(\mathbb{R}^{n+1} \). We get a collection tangent \(n \)-planes, one for each \(x \in M \).

Let \(E = \{ (x, y) \in M \times \mathbb{R}^{n+1} : y \in \text{tangent } n \text{-plane of } x \} \).

There is a map \(E \xrightarrow{p} M \)

\[
(x, y) \mapsto x
\]

\(p^*(x) = \text{tangent } n \text{-plane of } x \subset \mathbb{R}^n \).

Smoothness implies the needed linearity.
A variation: Replace tangent vectors by normal vectors and get an \(\mathbb{R}^N \)-bundle over \(M \).

Let \(x \) and \(y \) be vector bundles over \(X \) of dimensions \(m \) and \(n \) with total spaces \(E \) and \(E' \). Then we have a map \(E \times E' \to X \times X \) which is an \(\mathbb{R}^{m+n} \)-bundle over \(X \times X \).
null space \rightarrow E_1 \times E_2 \\
\downarrow \\
\times \xrightarrow{\text{diagonal}} \times \times \times \times \\
E = \{(x, y) \in E_1 \times E_2 : \rho_\alpha(x) = \rho_\beta(y)\}

This is an IR^{m+n}-bundle over \Sigma

called the Whitney sum of \alpha and \beta.

HASSLER WHITNEY

X = M^n, \alpha = tangent bundle

\mathbb{R}^{m+k}, B = normal bundle
\(\mathcal{O} \otimes B \cong \text{trivial } R_{n+k} \text{-bundle} / M \)

\[= M \times R^{n+k} \]

...but in general \(\mathcal{O} \) is not the trivial \(R^n \)-bundle over \(R \) and \(B \) is also nontrivial.