Recall Quillen Thom 1969. The topological FGL over \(\mathbb{R}^x \) MV is isomorphic to Jazards universal example.

Let \(F \) be a FGL over a torsion free ring \(R \).

Then over \(R\mathbb{Q} \), \(F \) is isomorphic to the additive FGL, i.e., there is a power series \(y(x) \in R\mathbb{Q}[\mathbb{Q}[x]] \) such that
\[g(F(x, y)) = g(x) + g(y). \] \(g(x) \) is the logarithm of \(F \).

Example. Let \(F(x, y) = x + y + xy \)

\[1 + F(x, y) = (1 + x)(1 + y) \]

\[\ln (1 + F(x, y)) = \ln (1 + x) + \ln (1 + y) \]

and

\[\ln (1 + x) = \sum_{n=1}^{\infty} \frac{x^n}{n} \]

\(g(F(x, y)) = g(x) + g(y) \).

Then (Maschenko) \(\ln \) the \(F \) \(C \) \(L \) over \(T_2n-2(\mathbb{C}) \)

\[\log x = \sum_{n=1}^{\infty} \frac{\text{CP}^{n-1}x^n}{n} \] where \(\text{CP}^{n-1} \in T_2n-2(\mathbb{C}) \).
Given a FGL \(F \), define power series \([\ell_n]_F (x) \) for integers \(n \) as follows:

\[
\begin{align*}
[1]_F (x) &= x, \\
[0]_F (x) &= 0, \\
[\ell_{n+1}]_F (x) &= F (x, [\ell_n]_F (x)), \\
[\ell_{m+n}]_F (x) &= \pi ([\ell_m]_F (x), [\ell_n]_F (x)).
\end{align*}
\]

Example:

1. \(\ell_1 (x) = (1 + x)^{-1} - 1 \)

\[
= \sum_{k=0}^{\infty} \left(\begin{array}{c} -1 \\ k \end{array} \right) x^k
\]
Lemma. For a prime p, over \mathbb{F}_p

\[
 [p]^n(x) = \begin{cases}
 a_1 x^n + \text{higher terms mod } p & \text{for } a \neq 0 \\
 0 & \text{mod } p
 \end{cases}
\]

\[\text{in } \mathbb{F}_p \quad [p](x) = x^p \quad \text{mod } p\]

If $F(x, y) = x + y$, then $[m]^n(x) = nx$

so $[p]^n(x) = 0 \quad \text{mod } p$.

Def. The integer n is the height of F at p.

When $[p]^n(x) = 0$, the height is ∞.

Then over an algebraically closed field of char. p, two FGLLs are isomorphic if they have the same height.

Example:

$$\log x = \sum_{i=0}^{\infty} \frac{x^{p^i}}{p^i} = g(x)$$

Honda

$$= x + \frac{x^{p^2}}{p^2} + \frac{x^{p^3}}{p^3} + \ldots$$

This is the log of a FGLL over \mathbb{Z}_p with height n at p.

$$g^{-1}(g(x) + g(y)) \in \mathbb{Z}(p)[[x,y]]$$
Remark: If E is an elliptic, we can choose a local co-ord x at the identity element x_0. The group law for E is a FGL near O. Its height at a reasonable prime in O is 1 or 2.

Recall the power series $[n]_F(x)$ for $n \in \mathbb{Z}$. It can be regarded as an endomorphism of F, i.e.

$$[n] (F(x,y)) = F ([n](x), [n](y))$$
If \(F \) is defined over a \(\mathbb{Z}_p \)-algebra or a \(\mathbb{Z}_p^\times \)-algebra, we can find power series \([n]_F(x) \) for \(n \in \mathbb{Z}_p \) or \(n \in \mathbb{Z}_p^\times \) with similar properties.

Thus we get homomorphisms

\[
\mathbb{Z}_p^\times \to \text{End}_F(F) = \text{endomorphism ring of } F
\]

with

\[
[n]_F(x) = nx \mod (x^2)
\]
Suppose F be defined over an A-algebra, where A is the ring of integers in a number field or a finite extension of Q_p. Can we make sense of $[a]_{f, e}(x)$ for $a \in A$?

Def: If we can, we say F is a formal A-module.

Lemma (Ihara-Tate 1965) Let A be the ring of integers in a finite extension of Q_p with maximal ideal \mathfrak{p} and $A/\mathfrak{p} = \overline{F}$.

Let $f(x) \in A[x]$ with
i) \(f(x) = \pi x \mod (x^2) \)

ii) \(f(x) = u x^6 \mod (\pi) \) for a unit \(u \)

\(e.g. \ f(x) = \pi x + x^3 \)

Then there is a formal \(A \)-module \(F \) over \(A \) for which \(\tilde{m}(x) > f(x) \).

They use this to construct field extension of \(K \), namely

\[
K_n = K [\pi^n] / (\tilde{m^n}(x) / x)
\]

\[
\text{Gal} [K_n : K] = [A / (\pi^n)]^\times
\]
Example

\[K = \mathbb{Q}_2 \left[\sqrt{37} \right] / (5^{4,1}) \]

\[= \mathbb{Q}_2 \left[\text{eight roots of unity} \right] \]

\[A = \mathbb{Z}_2 \left[\sqrt{37} \right] / (5^{4,1}) \]

\[\Pi = 5^{-1} \]

and \[\Pi^4 = 2, \text{ unit} \]

Let \[g(x) = \sum_{i=0}^{\infty} \frac{x^{2^i}}{\Pi^{2^i}} = x + \frac{x^2}{\Pi} + \frac{x^4}{\Pi^2} + \frac{x^8}{\Pi^3} + \ldots \]

This is the log of a formal \(A \)-module \(\Pi \)

over \(A \).

\[[\Pi] (x) = x^2 \mod \Pi \]

height is 4.

\[[\Pi \Pi] (x) = x^8 \mod \Pi \]
Recall the Honda height in $FG_\mathcal{L}$
\[
\log = \sum_{i=0}^{p^n-1} \frac{1}{i}
\]
Consider this over \mathbb{F}_{p^n}. Its automorphism g_P is S_n, the nth Morava stabilizer g_P.
There is a ring $\mathbb{W}(\mathbb{F}_{p^n})$, the Witt ring for \mathbb{F}_{p^n}.
It is a degree n extension of \mathbb{Z}_p obtained by adjoining (p^n-1) th roots of unity. It is maximal ideal is (p) and its residue field is \mathbb{F}_{p^n}.
$\text{Ker} (\mathbb{F}_{p^n}: \mathbb{F}_p) = C_n$
generated by the Frobenius map $x \mapsto x^p$. This automorphism lifts to W and is denoted by $x \mapsto x^q$ where $x^q \equiv x^p \mod p$.

Let $E = W \langle \sigma \rangle / \langle \sigma^q - 1 \rangle$

$s w = w^q s$ for $w \in W$.

Then $E \otimes \mathbb{Q}_p$ is a division algebra of rank n^2 over \mathbb{Q}_p.

Consider the group of units in E \(U_n\) is isomorphic to the automorphism
\mathfrak{P} of $E \otimes E_{\mathfrak{P}}$.

Interesting property of D:

Any degree n extension of \mathbb{Q}_p is a subfield of D, e.g., K as above embeds for $n = 4$, and the group has an element of order 8.