
• �� � = lim
	

�	
� �	.

• π�� is similarly defined.

How to define the homology and homotopy of a spectrum X.

• X and �� have the same homotopy and homology.

• For an Ω-spectrum X, πi X = πi X0 (for � ≥ 0), but HiX and Hi(X0) are wildly 

different.  For the spectrum �, the mod � homology turns out to be trivial.

Remarks:

Why study spectra????

Short answer: Homotopy theory is nicer in the world of spectra than in the world of 

spaces.

If a space � is �-connected, then it behaves nicely below dimension 2�.

Freudenthal Suspension Theorem (1937).  The suspension  homomorphism 

�	
� �	 →  �	
�
��	
� is an isomorphism for # < � − 1 and onto for # = � −
1.  This means that the group �	
� �	 is independent of � for � > # + 1.  It is by 
definition ���3.

Consider a cofiber sequence, where A and X are CW-complexes with base point and 

f is a cellular base point preserving maps.

     4

     � ≅ 6_8 = mapping cylinder 4 × : ∪ �/<=, 1>~8<=>, <=3 × :>~�@��A.

     X/A≅ 6B/<4, 0> ≅ CB =mapping cone of f.

There is a long exact sequence relating the homology groups of these three spaces.  

The homotopy groups are hard top relate to each other.  If A and X are n-

connected, then there is a long exact sequence of homotopy groups below 

dimension 2n.

A cofiber sequence as above can be extended to the right as follows.
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A cofiber sequence as above can be extended to the right as follows.

4 → � → �/4 → Σ4 → Σ� →  Σ�/4 → ⋯

Consider the map f as above.  It has a homotopy theoretic fiber <HTF> as 
follows.  � ≅ 6_8.  We can show that A is homotopy equivlent to the space of 
paths in 6_8 that start in the subspace  4 × 0. The HTF P is the subsapce of 
such paths that end at Q3 ∈ �.
There is a LES relating the homotopy groups of F, A and X.
When we have a fiber bundle 

P → W → X
The HFT of the map p is equivalent to F.  The homology groups are hard to relate.

A fiber sequence can be extended to the left

  … → ΩF → ΩA → ΩX →P→ 4 → �

In the world of spectra these two constructions coincide up to homotopy 

equivalence and ΣΩ� ≅ � and � ≅ ΩΣ�. Hence we can define Σ[�� = Ω� and 
Ω[�� = Σ�.

In the  category of spectra (yet to be precisely defined!), fiber sequences and 

cofiber sequences are the same thing. We have long exact sequences in BOTH 

homotopy and homology.

The Serre spectral sequence is a way to compute �∗W in terms of �∗P and �∗X.

Example W = X × P. If we are using field coefficients, �∗W = �∗X ⊗ �∗P. 

^_:  W_
�,a →  W_

�
_,a[� with ^_^_ = 0. 

Consider the bigraded group W_
�,a = ��<X; �aP> . If we are using field 

coefficients, this group is simply ��X ⊗ �aP. It turns there is a homomorphism

This makes W_ into a bigraded cochain complex.  We will denote its cohomology 
by We

∗,∗ .  We
�,a = ker fg

⬚
ii�j ^_.

It turns there is a homomorphism
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^e:  We
�,a →  We

�
e,a[_ with ^e^e = 0. 
It turns there is a homomorphism

This makes We into a bigraded cochain complex.  We will denote its cohomology 
by Wk

∗,∗ .  Wk
�,a = ker ^_/ �j ^_.

^l:  Wl
�,a →  Wl

�
l,a
�[l with ^l^l = 0. 
It turns there is a homomorphism

This makes Wl into a bigraded cochain complex.  We will denote its cohomology 
by Wl
�

∗,∗ .  Wl
�
�,a = ker ^_/ �j ^_. For all m > 1.

This leads to groups Wn
�,a . It is a subquotient  of ��
aW.  The CW-complex B has 

skeleta  X3 ⊂ X� ⊂ X_ ⊂ ⋯ . We can define subspaces of � = W by 

Wn
�,a = P� ��
a�/ P�
� ��
a�.

�� = �[�rX�s. There are maps �� → � and hence homomorphisms �∗� → �∗��

with kernel P�
��∗�. The intersection of all of these subgroups is trivial, and 
their union is �∗�.  Then
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