Recall *E* denotes the mod 2 Eilenberg-Mac Lane spectrum, *A* denotes the mod 2 Steenrod algebra and H^*X (H_*X) denotes the mod 2 cohomology (homology) of *X*.

 $H^n X = \pi_n E \wedge X$ and $H^n X = [X, \Sigma^n E]$

 $H^*E = A$

There is a unit map $f: S^0 \to E$ inducing surjections in both H^* and π_* . We can smash this map with any spectrum X and get a map

 $f: X \to X \land E$ which is surjective in cphomology but not necessarily in homotopy.

For a locally finite wedge K of suspensions of E, $\pi_*K = Hom_A(H^*K, Z/2).$

Some basic facts about these are listed in Prop 2.1.2 of the green book, see http://www.math.rochester.edu/people/faculty/doug/mybooks/ravenel2.pdf.

Consider the long exact sequence (2.1.4). Applying the functor $Hom_A(*, Z/2)$ to each H^*K_s yields a cohcain complex of the form $\pi_*K_0 \rightarrow \pi_*\Sigma K_1 \rightarrow \pi_*\Sigma^2 K_2 \rightarrow \cdots$ Its cohomology is $Ext_A^{s,t}(H^*X, Z/2)$. This is $E_2^{s,t}$ of a spectral sequence converging to

Its conomology is Ext_A' (H'X, Z/Z). This is E_2' of a spectral sequence converging to $\pi_{t-s}X$. The indxeing is such that

 $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$. This differential raises s by r and decreases the topological dimension t - s by 1. When $X = S^0$, we have $E_2 = Ext_A^{s,t}(Z/2, Z/2)$. Finding it is a purely algebraic problem suitable for a computer.

Isaksen's chart can be found at

http://www.math.rochester.edu/people/faculty/doug/otherpapers/isaksen-charts.pdf

0-line (s = 0, x-axis): $E_2^{0,t} = Hom_A(k, \Sigma^t k)$ where k = Z/2.

Digression in homological algebra:

 $Ext_R^s(M, N)$ is the set of equivalence classes of exacts sequences of of R-modules of length s + 2 starting with N and ending with M. See any book on homological algebra.

1-line (s = 1) $E_2^{1,t} = Ext_A^1(k, \Sigma^t k)$

We are looking for a short exact sequence of A-modules of the form $0 \rightarrow \Sigma^t k \rightarrow M \rightarrow k \rightarrow 0$. The top class in dimension t must be Sq^t on the 0dimensional class. The Adme relation implies that Sq^t can be written as a sum of products of lower operations unless $t = 2^j$ for some j. For example $Sq^3 = Sq^1Sq^2$. When $t = 2^j$, we get a nontrival element in $Ext_A^1(k, \Sigma^t k)$ denoted by $h_j \in E_2^{1,2^j}$. These are permanent cycles for $0 \le j \le 3$. They represent elements in $\pi_{2^j-1}S^0$, namely 2ι (where $\iota \in \pi_0S^0$ denmotes the identity map) for j = 0, and the supensions of the Hopf maps for j > 0. Recall there are maps of spaces constructed by Hopf in 1930, $S^3 \rightarrow S^2$, $S^7 \rightarrow S^4$, and $S^{15} \rightarrow S^8$.

What about h_4 ? Is there a similar map $S^{31} \rightarrow S^{16}$? This would be related to a division algebra over the reals of dimension 16. Adams proved that the map does not exist, which implies that the diovision algebra dioes not exist.