The Serre spectral sequence:

Let $F \rightarrow E \rightarrow B$ be a fiber bundle of CW-complexes. Suppose we know the homologies or cohomologies of *F* and *B*, and we want to find that of *E*.

Consider the bigraded group $E_2^{i,j} = H^i(B; H^j F)$. This group vanishes if i < 0 or j < 0.

It turns out that for each bidegree there is homomorphism

 $d_2: E_2^{i,j} \to E_2^{i+2,j-1}$ with $d_2d_2 = 0$,

so we have a bigraded cochain complex. We denote its cohomology by $E_3^{i,j}$. Inductively we have maps

 $d_r: E_r^{i,j} \to E_r^{i+r,j-r+1}$ with $d_r d_r = 0$,

so we have a bigraded cochain complex. We denote its cohomology by $E_{r+1}^{i,j}$. Note that $E_2^{i,j} = 0$ if either *i* or *j* is negative. This means that for fixed *i*, *j*, for $r \gg 0$, the incoming and outgoing d_r are both trivial, so $E_r^{i,j} = E_{\infty}^{i,j}$.

EXAMPLE

Suppose $F = S^{n-1}$. This means that $E_2^{i,0} = E_2^{i,n-1} = H^i B$ and $E_2^{i,j} = 0$ for other values of j. The only possible nontrivial differential is d_n .

Suppose our sphere bundle is the unit sphere bundle for an *n*-plane bundle ξ over B. Then it tutrn out that d_n is multiplication (via cup product) by a class $e(\xi) \in H^n B$ called the Euler

class of \xi. The kernel of d_n is $E_{n+1}^{i,n-1}$ and the cokernel is $E_{n+1}^{i+n,0}$. Furthermore, there are no more differentials, so $E_{n+1} = E_{\infty}$. We get a long exact sequence

$$\dots \to H^{k-n}B \xrightarrow{\mathcal{A}} H^kB \to H^kE \to H^{k-n-1}B \to \cdots$$

Specific example. $S^1 \rightarrow S^{2n+1} \rightarrow CP^n$. Think of S^{2n+1} as the unit sphere in C^{n+1} . The unit circle acts on it by scalar multiplication. The orbit is CP^n , the space of complex lines thru the origin.

This leads to $H^*E = H^*S^7$.

Consider the canonical complex line bundle λ over CP^{∞} . $H^*CP^{\infty} = Z[x]$ where $x \in H^2$. The Euler class is x. The fiber sequence is $S^1 \to S^{\infty} \to CP^{\infty}$.

Conclusion is that $H^*S^{\infty} = H^*(point)$. Consideer the n-fold direct sum of λ with itself. Then $e(n\lambda) = e(\lambda)^n = x^n$. For n = 3 we get $S^5 \to E \to CP^{\infty}$.

Conclusion : $H^*E = H^*CP^2$. Exercise: show that E is homotopy equivalent to CP^2 .

EXAMPLE 2. $K(Z/2,1) = F \rightarrow E \rightarrow K(Z/2,2) = B$ where E is the path pace of B and $F = \Omega B$. We know that $K(Z/2,1) = RP^{\infty}$ so its mod 2 cohomology is Z/2[x] where $x \in H^1$ and E has the cohomology of a point.

 d_2 is a derivation with respect to cup product, i.e., it behaves like the product rule in calculus. $d_2(x^n) = n x^{n-1} d_2(x) = n x^{n-1} x_2$. This vansihes for even n but not for odd n.

Conclusion: $H^*(K(\frac{z}{2}, 2)) = F_2[x_2, x_3, x_5, x_9,]$ where $x_{1+2^i} \in H^{1+2^i}$.