The Serre spectral sequence:
Let $F \rightarrow E \rightarrow B$ be a fiber bundle of CW-complexes. Suppose we know the homologies or cohomologies of F and B, and we want to find that of E.

Consider the bigraded group $E_{2}^{i, j}=H^{i}\left(B ; H^{j} F\right)$. This group vanishes if $i<0$ or $j<0$.
It turns out that for each bidegree there is homomorphism

$$
d_{2}: E_{2}^{i, j} \rightarrow E_{2}^{i+2, j-1} \text { with } d_{2} d_{2}=0
$$

so we have a bigraded cochain complex. We denote its cohomology by $E_{3}^{i, j}$. Inductively we have maps

$$
d_{r}: E_{r}^{i, j} \rightarrow E_{r}^{i+r, j-r+1} \text { with } d_{r} d_{r}=0,
$$

so we have a bigraded cochain complex. We denote its cohomology by $E_{r+1}^{i, j}$. Note that $E_{2}^{i, j}=$ 0 if either i or j is negative. This means that for fixed i, j, for $r \gg 0$, the incoming and outgoing d_{r} are both trivial, so $E_{r}^{i, j}=E_{\infty}^{i, j}$.

EXAMPLE

Suppose $F=S^{n-1}$. This means that $E_{2}^{i, 0}=E_{2}^{i, n-1}=H^{i} B$ and $E_{2}^{i, j}=0$ for other values of j. The only possible nontrivial differential is d_{n}.

Suppose our sphere bundle is the unit sphere bundle for an n-plane bundle ξ over B. Then it tutrn out that d_{n} is multiplication (via cup product) by a class $e(\xi) \in H^{n} B$ called the Euler
class of \backslash xi. The kernel of d_{n} is $E_{n+1}^{i, n-1}$ and the cokernel is $E_{n+1}^{i+n, 0}$. Furthermore, there are no more differentials, so $E_{n+1}=E_{\infty}$. We get a long exact sequence

$$
\ldots \rightarrow H^{k-n} B \xrightarrow{d m} H^{k} B \rightarrow H^{k} E \rightarrow H^{k-n-1} B \rightarrow \ldots
$$

Specific example. $S^{1} \rightarrow S^{2 n+1} \rightarrow C P^{n}$. Think of $S^{2 n+1}$ as the unit sphere in C^{n+1}. The unit circle acts on it by scalar multiplication. The orbit is $C P^{n}$, the space of complex lines thru the origin.

This leads to $H^{*} E=H^{*} S^{7}$.
Consider the canonical complex line bundle λ over $C P^{\infty}$. $H^{*} C P^{\infty}=Z[x]$ where $x \in H^{2}$. The Euler class is x. The fiber sequence is $S^{1} \rightarrow S^{\infty} \rightarrow C P^{\infty}$.

Conclusion is that $H^{*} S^{\infty}=H^{*}$ (point). Consider the n -fold direct sum of λ with itself. Then $e(n \lambda)=e(\lambda)^{n}=x^{n}$. For $n=3$ we get $S^{5} \rightarrow E \rightarrow C P^{\infty}$.

Conclusion : $H^{*} E=H^{*} C P^{2}$. Exercise: show that E is homotopy equivalent to $C P^{2}$.

EXAMPLE 2. $K(Z / 2,1)=F \rightarrow E \rightarrow K(Z / 2,2)=B$ where E is the path pace of B and $F=$ ΩB. We know that $K(Z / 2,1)=R P^{\infty}$ so its mod 2 cohomology is $Z / 2[x]$ where $x \in H^{1}$ and E has the cohomology of a point.

d_{2} is a derivation with respect to cup product, i.e., it behaves like the product rule in calculus. $d_{2}\left(x^{n}\right)=n x^{n-1} d_{2}(x)=n x^{n-1} x_{2}$. This vansihses for even n but not for odd n .

$$
\begin{aligned}
& E_{3} \quad \begin{array}{l}
\text { } \\
\\
\end{array} \text { x } \quad d_{3}\left(\left(x^{2}\right)^{n} x_{3}^{i}\right)=n\left(x^{2}\right)^{n-1} x_{3}^{i+1} . \\
& 4 x^{4} \\
& \begin{array}{l|lll}
3 \\
2 & x^{2} & \\
1 & d_{3} \\
1 & \\
\hline
\end{array} \\
& 0123
\end{aligned}
$$

Conclusion: $H^{*}\left(K\left(\frac{Z}{2}, 2\right)=F_{2}\left[x_{2}, x_{3}, x_{5}, x_{9}, \ldots ..\right]\right.$ where $x_{1+2^{i}} \in H^{1+2^{i}}$.

