Some categorical notions

1. Enrichment, I. In a category C one has a set of morphisms for each pair of objects. This set may have some additional structure that is natural in C.

(i) C = Ab, the category of abelian groups or R-modules. Then Ab(X, Y) is an abelian group in a natural way.

(ii) For C = Top, the category of (pointed) topological spaces, Top(X, Y) has the compact open topology.

(iil) Let *G* be a group and let T^G be the category of pointed G-spaces. The space of (non-equivariant) continuous maps $T^G(X, Y)$ is a G-space. For $g \in G$ and $f: X \to Y$, we define $g(f): X \to Y$ by

 T^G is enriched over itself. Note that the space of equivariant maps from X to Y is $(T^G(X,Y))^{A}G$, a space without a G-action.

2. Adjoint functors. Let C and D be categories with functors $F: C \to D$ and $G: D \to C$. Let X and Y be objects of C and D respectively. Then if

D(F(X),Y) = C(X,G(Y)),

we say that F is the left adjoint of G and G is the right adjoint of F.

Example: (a) C = Set, D = Ab, and $G: D \rightarrow C$ is the forgetful functor. Then F is the free abelian group functor.

(b) Let $H \subset G$ be a subgroup. Let T^H and T^G be the categories as above. Let $i_H^*: T^G \to T^H$ be the forgetful or restriction functor. It has both a left adjoint L and a right adjoint R, where for an H-space Y,

 $L(Y) = G_+ \wedge_H Y = (G/H)_+ \wedge Y$

where G_+ is G with a disjoint base point and $G_+ \wedge_H Y$ denotes the orbit space of $G_+ \wedge_H Y$ and

 $R(Y) = T^H(G_+, Y) = \prod_W Y$ where $W = \lfloor \frac{G}{H} \rfloor$, where G permutes the factors, each of which is H-invariant.

3. A <u>symmetric monoidal category</u> (SMC) is a category C equipped with a map $C \times C \to C$ with natural associativity isomorphisms $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$, natural symmetry isomorphisms $X \otimes Y \to Y \otimes X$ and a unit object 1 with unit isomorphisms $\iota_X : 1 \otimes X \to X$. The monoidal structure is <u>closed</u> if the functor $A \otimes (-)$ has a right adjoint $(-)^A$, the internal Hom with

 $\mathcal{C}(1,X^A)=\mathcal{C}(A,X).$

4. A fancier definition of an enriched category. Let $\mathcal{V} = (\mathcal{V}_0, \otimes, 1)$ be an SMC. A \mathcal{V} -category C has

a collection of objects ob(C) and for each pair of objects X, Y an object C(X, Y) in \mathcal{V} . For each object X in C we have a morphism $1 \to C(X, X)$ in \mathcal{V} . We have composition

 $C(Y,Z) \otimes C(X,Y) \to C(X,Z)$

A functor $F: C \to D$ between \mathcal{V} -categories consists of a function $F: ob(C) \to ob(D)$ and each pair of obects X and Y in C, $C(X, Y) \to D(FX, FY)$ with naturality conditions.

See Appendix A of <u>http://www.math.rochester.edu/people/faculty/doug/kervaire_061114.pdf</u>.