uary	24, 2015 7:33 AM	$\operatorname{\mathfrak{G}}$
	Examples of closed symmetric monoidal categories:	symmetric monoidal category
	 (Sets, ×, 1), sets with Cartesian product. (T, Λ, S⁰), pointed spaces and smash product. (T^G, Λ, S⁰), pointed G-spaces with smash product and G-maps. 	<u> </u>
	In each case we can define a category enriched over it. For 1 we have an ordinary category, for 2 a topological category, for 3 a topological G-category (TGC). In each case there is an	$(\mathcal{T}^G, \wedge, S^0)$
	internal hom, X^Y . Let \mathfrak{Cat}_G denote the category of TGCs. One example of such is \underline{T}_G , the category of pointed G-spaces and nonequivariant maps.	(\mathcal{T},\wedge,S^0)
	We will define spectra as functors from a certain indexing category to \underline{T}_{G} .	${\cal T}^{G}$
	Def. A.10: The indexing category \mathcal{J}_G is the TGC whose objects are finite dimensional real orthogonal representations V of G . Let $O(V, W)$ denote the space of orthogonal embeddings $V \to W$. It is called a Stiefel manifold. It is empty if dim $W < \dim V$. For each such embedding we have an orthogonal complement $W - V$, giving us a vector bundle over $O(V, W)$. Let $\mathcal{J}_G(V, W)$ be its Thom space, which is a pointed G -space.	\mathcal{J}_{G}
	When dimW <dim <math="" v,="">O(V, W) is empty and $\mathcal{J}_G(V, W)$ is a point. Informally, $\mathcal{J}_G(V, W)$ is a wedge of spheres S^{W-V} parametrized by the orthogonal embeddings $V \to W$.</dim>	
	Def. A.13: An orthogonal G-spectrum X is a functor $\mathcal{J}_G \to \underline{T}_G$.	

Informally we have a *G*-space X_V for each representation *V*, and for each embedding $V \to W$ a map $S^{W-V} \land X_V \to X_W$. Here S^V denotes the one point compactification of *V*, which is *G*-space with ∞ as base point.

In the original definition of a spectrum we had for each n a space X_n and a map $\Sigma X_n = S^1 \wedge X_n \to X_{n+1}$. Now we have a family of such maps parametrized by the orthogonal embeddings $\mathbb{R}^n \to \mathbb{R}^{n+1}$.

esday, Feb

Cat_G