Recall \mathcal{I}_{G} denotes the TGC of pointed G -spaces and nonequivariant maps.	symmetric monoidal category
\mathcal{J}_G denotes the TGC whose obects are finite dimensional orthogonal representations of G and	\underline{T}_{G}
$\mathcal{J}_G(V,W) = Thom(O(V,W); W - V)$ where $O(V,W)$ is the Stiefel manifold of orthogonal embeddings $V \to W$. For each such embedding, $W - V$ denotes the orthogonal complement of V in W.	$(\mathcal{T}^{G}, \wedge, S^{0})$
If dim(<i>W</i>) < dim(<i>V</i>), there are no embeddings and $\mathcal{J}_G(V, W) = *$. If dim(<i>W</i>) = dim(<i>V</i>), $\mathcal{J}_G(V, W) = O(V, W)_+$.	$(\mathcal{T}, \wedge, S^0)$
If $\dim(W) > \dim(V)$ then the space is connected.	\mathcal{T}^{G}
One has composition maps $\mathcal{J}_G(V,W) \land \mathcal{J}_G(U,V) \rightarrow \mathcal{J}_G(U,W)$	${\mathcal J}_G$
A G-spectrum is a functor $X: \mathcal{J}_G \to \underline{\mathcal{T}}_G$. This means we have pointed G-spaces X_V and structure maps $\mathcal{J}_G(V, W) \land X_V \to X_W$.	\mathcal{S}^{G}
S^G denotes the category of <i>G</i> -spectra and nonequivariant maps. S_G denotes the category of <i>G</i> -spectra and and <i>G</i> -maps. Since a spectrum is a functor, a map between spectra is a natural transformation. These categories are complete and cocomplete, meaning they are have all small limits and colimits.	\mathcal{S}_{G}
For a spectrum <i>X</i> and space <i>A</i> we define a spectrum $X \wedge A$ by $(X \wedge A)_V = X_V \wedge A$.	

The spectrum S^{-V} is defined by $(S^{-V})_W = \mathcal{J}_G(V, W)$. With structure maps being the composition maps above.

Yoneda Lemma: Let C be a category with an object A. Then $h^A := C(A, -)$ is a covariant set valued functor on C. Let F be another such functor. Then the set of natural tarsnformations from h^A to F is F(A).

If C is enriched in some way, then the functors h^A and F will take values in the new category, eg \mathcal{T}_G .

Application: $C = \mathcal{J}_G$, A = V and F = X. The "set" of natural transformations is the space of spectrum maps $S^{-V} \to X$ is X_V .

Reflexive coequalizers: Consider the category W with two objects A and B and three morphisms $f, g: A \to B$ and $s: B \to A$ with $fs = gs = 1_B$. A functor $W \to C$ is a diagram in C which may have a colimit called the reflexive coequalizer.

Example: C = Ab and $A_n = Z$ for $n \ge 0$. Let there be a map $A_n \rightarrow A_{n+1}$ that is multiplication by 2. The colimit of

 $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots$ is $Z[\frac{1}{2}]$. It can also be described as a reflexive coequalizer as follows.

 $\begin{array}{l} A = \bigoplus_{m,n \ge 0} A_{m,n} \text{ where } A_{m,n} = Z \\ B = \bigoplus_{m \ge 0} A_m \text{ where } A_m = Z \\ f: A_{m,n} \to A_{m+n} \text{ via multiplication by } 2^n \\ g: A_{m,n} \to A_m \text{ via multiplication by } 1. \\ s: A_m \to A_{m,0} \text{ via multiplication by } 1. \end{array}$ Then the reflexive coequalizer is $Z[\frac{1}{2}].$

Here is a diagram whose reflexive coequalizer is a spectrum *X*.

$$A = \bigvee_{V,W} \square S^{-W} \land \mathcal{J}_G(V,W) \land X_V$$

$$B = \bigvee_{V} \square S^{-V} \wedge X_{V}$$

 $f = i \wedge X_V$ where $i: S^{-W} \wedge \mathcal{J}_G(V, W) \to S^{-V}$ is the structure map. On U its is $\mathcal{J}_G(W, U) \wedge \mathcal{J}_G(V, W) \to \mathcal{J}_G(V, U)$, the composition map.

$$\begin{split} g &= S^{-w} \wedge j \text{ where } j \colon \mathcal{J}_G(V,W) \wedge X_V \to X_W \text{ is the structure map for } X. \\ g \colon S^{-W} \wedge \mathcal{J}_G(V,W) \wedge X_V \text{ to } S^{-W} \wedge X_W. \end{split}$$

$$A_{U} = \bigvee_{V,W} \Box \mathcal{J}_{G}(W,U) \wedge \mathcal{J}_{G}(V,W) \wedge X_{V}$$
$$B_{U} = \bigvee_{V} \Box \mathcal{J}_{G}(V,U) \wedge X_{V}$$

The coequalizer is X_U . Hence the spectrum coequalizer is X.

This can be written as

 $X = \operatorname{colim}_V S^{-V} \wedge X_V$, a colimit of "desuspension" spectra. The is the tautological presentation of *X*.