

The only differential in this range go from the x-axis to the y-axis. Such differentials are called *transgressions*. We get a long exact sequence

$$0 \to H^{n}B \xrightarrow{\downarrow} H^{n}E \xrightarrow{\downarrow} H^{n}F \xrightarrow{\downarrow} H^{n+1}B \xrightarrow{\downarrow} H^{n+1}E \xrightarrow{\downarrow} H^{n+1}F \xrightarrow{\downarrow} H^{n+2}B \dots$$

This LES looks like the one for the cofiber sequence $F \rightarrow E \rightarrow E/F$. There is a map $\frac{E}{F} \rightarrow B$. This leads to a map between long exact sequences below dimension 2n and we see that in this range, B and E/F have the same cohomology.

In the world of connective spectra, we have this in all nonnegative dimensions. In this world, fiber sequences and cofiber sequences coincide. This is a good thing!

Back to mod 2 Eilenberg-Mac Lane spaces. Let $K_n = K(Z/2, n)$. We want to know $H^*(K_n, Z/2)$ for all n. For n = 1 we know $H^* K_1 = P(x)$ where $x \in H^1$ and P denotes polynomial algebra. $K_1 = RP^{\infty}$. In the Serre spectral sequence for $K_1 \to * \to K_2$ we see that $H^*K_2 = P(x_2, x_3, x_5, ...)$.

Definition. A *simple system of generators* for a graded Z/2-algebra R is a collection $\{x_1, x_2, ...\}$ such that the set of all products of the form $x_{i_1}x_{i_2}$ where $i_1 < i_2 < i_3$... is a basis for R.

Example. A simple system of generators for P(x) is $\{x^{2^i} : i \ge 0\}$

Theorem (Borel 1953) Let $F \rightarrow E \rightarrow B$ be a fiber sequence where (i) $H^*E = H^*$ (*point*).

(ii) H^*F has a simple system of generators $\{x_1, x_2, ...\}$ with $|x_i| =: n_i$. Then $H^*B = P(y_1, y_2, ...)$ where $|y_i| = 1 + n_i$.

This was proved using the Serre spectral sequence.

We saw this in the relations between H^*K_1 and H^*K_2 .

Steenrod operations: For each $i \ge 0$ we have homomorphisms

 $Sq^i: H^n(X, Y) \to H^{n+i}(X, Y)$ with the following porperties: (i) Naturality.

(ii) Commutes with connecting homomorphism δ .

(iii) (Cartan formula) $Sq^i(ab) = \sum_{0 \le k \le i} Sq^k(a)Sq^{i-k}(b)$

(iv) If i = |x|, then $Sq^i x = x^2$ and if i > |x|, then $Sq^i x = 0$. (v) $Sq^0 x = x$.

(vi) Sq^1 is the Bockstein map for the sequence

$$0 \to Z/2 \to Z/4 \to Z/2 \to 0.$$

These can be iterated. For a sequence of nonnegative integers $I = (i_1, i_2, ..., i_r)$, let $Sq^I = Sq^{i_1} Sq^{i_2} ...$ We will say that I is admissible if $i_k \ge 2i_{k+1}$ for each k. Define $n(I) = i_1 + i_2 + \cdots$ and the excess $e(I) = 2i_1 - n(I) = (i_1 - 2i_2) + (i_2 - 2i_3) + \cdots + i_r$.

Suppose that $H^*F = P(z_1, z_2, ...)$ with $n_i = |z_i|$. Let $L(a, r) = (2^{r-1}a ..., 2a, a)$. Then $Sq^{L(n_i, r)}(z_i) = z_i^{2^r}$. A simple system of generators for H^*F is $\{Sq^{L(n_i, r)}(z_i): i = 1, 2, ...; r \ge 0\}$.