Steenrod operations can be iterated. For a sequence of nonnegative integers $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$, let $S q^{I}=S q^{i_{1}} S q^{i_{2}} \ldots$.
We will say that I is admissible if $i_{k} \geq 2 i_{k+1}$ for each k. Define $n(I)=i_{1}+i_{2}+\cdots$ and the excess

$$
e(I)=2 i_{1}-n(I)=\left(i_{1}-2 i_{2}\right)+\left(i_{2}-2 i_{3}\right)+\cdots+\left(i_{r-1}-2 i_{r}\right)+i_{r} .
$$

Suppose that $H^{*} F=P\left(z_{1}, z_{2}, \ldots\right)$ with $n_{i}=\left|z_{i}\right|$. Let $L(a, r)=\left(2^{r-1} a \ldots, 2 a, a\right)$.
Note that $n(L(a, r))=\left(2^{r}-1\right) a$ and $e(L(a, r))=a$.
Then $S q^{L\left(n_{i}, r\right)}\left(z_{i}\right)=z_{i}^{2^{r}}$.
A simple system of generators for $H^{*} F$ is

$$
\left\{S q^{L\left(n_{i}, r\right)}\left(z_{i}\right): i=1,2, \ldots ; r \geq 0\right\} .
$$

Recall $K_{n}=K(Z / 2, n) . H^{*}\left(K_{1}\right)=P\left(u_{1}\right)$ where $u_{1} \in H^{1}$.
$H^{*}\left(K_{2}\right)=P\left(x_{2}, x_{3}, x_{5} \ldots\right)=P\left(u_{2}, S q^{1} u_{2}, S q^{(2,1)} u_{2}, \ldots\right)$

$$
=P\left(S q^{I}\left(u_{2}\right): I \text { is admissible, } e(I)<2\right) .
$$

Theorem. In general we have $H^{*}\left(K_{n}\right)=P\left(S q^{I}\left(u_{n}\right)\right.$: I is admissible, $\left.e(I)<n\right)$.
Combinatorial Lemma. Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ be admissible with $e(J)<n-1$. Let $s_{J}=n-1+n(J)$. For each $r \geq 0$ let $I=\left(2^{r-1} s_{J}, 2^{r-2} s_{J}, \ldots, s_{J}, j_{1}, j_{2}, \ldots j_{k}\right)$. Then every admissible sequence with excess $<\mathrm{n}$ has this form.

Proof: Note $s_{J}-2 j_{1}=n-1+n(J)-2 j_{1}=n-1-e(J)>0$, so I is admissible.
If $r=0$, then $I=J$.
For $r>0, e(I)=\left(s_{J}-2 j_{1}\right)+e(J)=n-1-e(J)+e(J)=n-1$.
Conversely let $I=\left(i_{1}, i_{2}, \ldots i_{\ell}\right)$ have excess $n-1$. Let r be the largest integer such that $i_{1}=2 i_{2}=4 i_{3} \ldots=2^{r-1} i_{r}$ and $J=\left(i_{r+1}, \ldots i_{\ell}\right)$.
Then $e(I)=\left(i_{r}-2 i_{r+1}\right)+e(J)=\left(i_{r}-2 i_{r+1}\right)+2 i_{r+1}-n(J)=i_{-} r-n(J)=n-1$ So $i_{r}=n-1+n(J)=s_{J}$.

Then I has the desired form. QED.
Let E denote the spectrum whose nth is K_{n}. This is the mod 2 Eilenberg-Mac Lane spectrum. Then $H^{*}(E)=Z / 2\left\{S q^{I}(u): I\right.$ admissible $\}$.

Adem relation: For $a<2 b, S q^{a} S q^{b}$ is a linear combination of admissible products.

Define the $\bmod 2$ Steenrod algebra A to be the free associative algebra generated by the $S q^{i}$ fgor i>0, smodule the Adem relations. The admissible monomial form a basis of it.

Then $H^{*} X$ for any space or spectrum X has a natural A-module structure, and $H^{*} E=A$.

Let X and Y be pointed spaces. Then their smash product $X \wedge Y$ is $(X \times Y) /(X \vee Y) . S^{m} \wedge S^{n}=S^{m+n}$. What about the smash product of spectra? Suppose X is the suspension spectrum of a space X , and Y is a spectrum.
Then we can define the spectrum $W=X \wedge Y$ by $W_{n}=X \wedge Y_{n}$.
Basic facts about the mod 2 Eilenberg-Mac Lane spectrum E.
Recall that for a space $\mathrm{X}, H^{n}(X ; Z / 2)=\left[X, K_{n}\right]$, the set of homotopy classes of maps $X \rightarrow K_{n}$. For a spectrum $X, H^{n}(X ; Z / 2)=\left[X, \Sigma^{n} E\right]$.
$H_{n}(X ; Z / 2)=\pi_{n}(X \wedge E)$. The functor on the right satisfiues the Eilenberg-Steenrod axioms.

