Recall we have topological G-categories categories \mathcal{T}_G (formerly $\underline{\mathcal{T}}_G$), the category of pointed *G*-spaces and \mathcal{J}_G , the category of finite dimensional orthogonal representations *V* of *G* with $\mathcal{J}_G(V, W)$ being the Thom space of the vector bundle over O(V, W), the sapce of orthogonal embeddings f of V into W, where the fiber over f is a the orthogonal complement of V in W as embedded by f.

If dim V>dim W, $\mathcal{J}_G(V, W) = *$. If dim V= dimW, $\mathcal{J}_G(V, W) = O(V, W)_+$. If dimV<dimW, then $\mathcal{J}_G(V, W)$ is connected and noncontractible. $\mathcal{J}_G(0, W) = S^W$. Composition of morphisms is given by $\mathcal{J}_G(V, W) \wedge \mathcal{J}_G(U, V) \rightarrow \mathcal{J}_G(U, W)$. When V=U or W we get get a right action of O(U) and a left action of O(W) on $\mathcal{J}_G(U, W)$.

A G-spectrum X is a functor $\mathcal{J}_G \to \mathcal{T}_G$. We denote its value on V by X_V . We have structure maps $\mathcal{J}_G(V, W) \land X_V \to X_W$. In particular X_V has a left action of O(V). The structure map must factor through the orbit space $\mathcal{J}_G(V, W) \land_{O(V)} X_V$.

Recall the tautological presentation of X, $\operatorname{colim}_V S^{-V} \wedge X_V$, where S^{-V} is the spectrum defined by $(S^{-V})_W = \mathcal{J}_G(V, W)$ and $(S^{-V} \wedge X_V)_W = (S^{-V})_W \wedge X_V$. The colimit is short had for a certain coequalizer. See previous notes. In particular S^{-0} is the sphere spectrum. We reserve ther symbol S^0 for the usal space.

<u>Smash products</u>. We can define the smash product of two spectra by something similar to the tautological presentation, $X \wedge Y = colim_{V,W} S^{-V \oplus W} \wedge X_V \wedge Y_W$.

Alternate description: We have a functor $X \wedge Y: \mathcal{J}_G \times \mathcal{J}_G \to \mathcal{T}_G$ by $(V, W) \mapsto X_V \wedge Y_W$. The external smash product. We also have $K: \mathcal{J}_G \times \mathcal{J}_G \to \mathcal{J}_G$ defined by $(V, W) \mapsto V \bigoplus W$. We define the functor $X \wedge Y$ to be the left Kan extension of $X \wedge Y$ along K.

Facts: $S^{-V} \wedge S^{-W} = S^{-V \oplus W}$. $X \wedge S^{-0} = S^{-0} \wedge X = X$ for any spectrum *X*.

This makes S^G into a symmetric monoidal category.