<u>Varying the indexing category</u>. Recall that \underline{S}_G is the TGC of functors from \mathcal{J}_G to \underline{T}_G . Within \mathcal{J}_G we have the full subcategory \mathcal{J} whose objects are finite dimensional vector spces with trivial *G*-action. Functors from \mathcal{J} to \underline{T}_G are called *naïve G*-spectra, meaning ordinary spectra in which each space has a *G*-action and each structure map is equivariant. The fully faithful inclusion functor $i: \mathcal{J} \to \mathcal{J}_G$ induces a functor from \underline{S}_G to the category of naïve *G*-spectra. We will not give the latter a name because it turns out that *the two categories are equivalent*.

The formal proof involves the *Kan extension* along *i*, meaning a canonical way to extend a functor on \mathcal{J} (such as a naive *G*-spectrum) to one on \mathcal{J}_G .

Let the category of naïve G-spectra be denoted by $\mathcal{T}_G^{\mathcal{J}}$, the category of functors $\mathcal{J} \to \mathcal{T}_G$ and the category of "genuine" G-spectra is \mathcal{S}^G . We have a functor $i^*: \mathcal{S}^G \to \mathcal{T}_G^{\mathcal{J}}$. We use a Kan extension along *i* to get a functor $i_!$ going the other way.

Informally, suppose V and W are two orthogonal G-representations of the same dimension. Then O(V, W) is acted on by O(V) on the right and by O(W) on the left and $\mathcal{J}_G(V, W) = O(V, W)_+$. The structure map $O(V, W)_+ \wedge_{O(V)} X_V \to X_W$ is a G-equivariant homeomorphism. This means that X_W is determined by X_V , even when the G-action on V is trivial. Hence the G-spectrum X is determined by its underlying naïve G-spectrum.

The norm functor. Let $H \subseteq G$ be finite groups and let m = |G|/|H|. We will define a functor $N_H^G: \underline{S}_H \to \underline{S}_G$ that is the right adjoint of the forgetful or restriction functor $i_H^*: \underline{S}_G \to \underline{S}_H$. On 2/23 we saw a similar construction on the space level involving the *m*-fold Cartesian products. On the pointed space level we get a *G*-action on the *m*-fold smash power $Y^{(m)}$ for an *H*-space *Y*. Given a representation *V* of *H*, one has the induced representation of *G*,

 $ind_{H}^{G}V = \mathbf{Z}[G] \bigotimes_{\mathbf{Z}[H]} V.$ It turns out that $N_{H}^{G}S^{V} = S^{ind_{H}^{G}V}$ and that $N_{H}^{G}S^{-V} = S^{-ind_{H}^{G}V}.$

More formally, let *J* be a *G*-set and let $\mathcal{B}_J G$ be the small category with object set *J* with morphisms induced by the *G*-action. For each $j \in J$ and $\gamma \in G$ we get a morphism $j \rightarrow \gamma(j)$. When *J* is a point, we abbreviate this to $\mathcal{B}G$, the one object category corresponding to *G*. A functor from $\mathcal{B}G$ to some category *C* is the same thing as an action of *G* on an object of *C*. We denote the category of such functors by $C^{\mathcal{B}G}$. Hence $\mathcal{S}^{\mathcal{B}G}$ is the category of

naive *G*-spectra, which we have seen to be equivalent to \underline{S}_G .

A $\mathcal{B}_J G$ -diagram in S, meaning a functor $X: \mathcal{B}_J G \to S$, leads to G-actions on the spectra $\bigvee_{i \in I} X_i$ and $\bigwedge_{i \in I} X_i$, the indexed wedge and smash product of X.

For J = G/H there is an inclusion $\mathcal{B}H \to \mathcal{B}_J G$ to the full subcategory containing the coset of the identity in G. It is an equivalence of categories. It has a Left Kan extension leading to an equivalence between $\mathcal{S}^{\mathcal{B}H}$ and $\mathcal{S}^{\mathcal{B}_J G}$. The indexed wedge and smash product gives us two functors from \underline{S}_H to \underline{S}_G sending an H-spectrum X to $G_+ \wedge_H X$ and $N_H^G X$.

A weak equivalence in \mathcal{T}^G , the category of pointed *G*-spaces and equivariant maps, is a map $f: X \to Y$ that induces an isomorphism $\pi_* X^H \to \pi_* Y^H$ for each $H \subseteq G$.

Recall how homotopy groups of a spectrum are defined. In the original definition, $\pi_k X = \lim_n \square \pi_{n+k} X_n$. For us it is $\pi_k^G X = \lim_V \square \pi_{V+k}^G X_V$ where $\pi_{V+k}^G Y = [S^{V+k}, Y]^G$ for a G-space Y. We also have underlying homotopy groups $\pi_k^u X = \lim_V \square \pi_{|V|+k}^u X_V$. We can define $\pi_* X^H$ for each subgroup H. A map of G-spectra $f: X \to Y$ is a weak equivalence if It induces isomorphisms $\pi_* X^H \to \pi_* Y^H$ for each subgroup H.

This is the first step toward a model structure, for which we still need to define fibrations and cofibrations.