Here is a simple example of a functor that fails to preserve homotopy equivalences. It is taken from a very helpful introduction to model categories by <u>Dwyer and Spalinski</u>.

Let *D* denote the category $\{a \leftarrow b \rightarrow c\}$, **Top** the category of topological spaces, and **Top**^{*D*} the category of functors $D \rightarrow$ **Top**, i.e., pushout diagrams in **Top**. Then we have the functor colim: **Top**^{*D*} \rightarrow **Top** which assigns to each diagram its pushout. It is left adjoint to the functor Δ : **Top** \rightarrow **Top**^{*D*} which assigns to each pointed space *X* the constant *X*-valued diagram. A morphism in \mathcal{T}^D is a the obvious sort of commutative diagram. Consider the morphism

$$\begin{array}{ccc} D^n \leftarrow S^{n-1} \rightarrow D^n \\ \downarrow & \downarrow & \downarrow \\ * & \leftarrow S^{n-1} \rightarrow * \end{array}$$

in which each vertical map, and hence the morphism in \mathbf{Top}^{D} , is a weak equivalence. However the pushout of the top row (where the two maps are inclusion of the boundary) is S^{n} , while that of the bottom row is a point. Thus the pushout functor fails to preserve this weak equivalence.

It turns out there is a model structure on **Top**^{*D*} in which the top row is cofibrant but the bottom row is not, and the pushout functor DOES preserve weak equivalences between cofibrant objects. Let $f: X \to Y$ be a morphism in **Top**^{*D*}. It consists of three maps $f_a: X_a \to Y_a$, $f_b: X_b \to Y_b$ and $f_c: X_c \to Y_c$.

We define the model structure by saying that f is a weak equivalence/fibration if each of the three maps is, but the definition of a cofibration is more complicated. Let $\partial_b(f) = X_b$ and define $\partial_a(f)$ to be the pushout of

$$\begin{array}{ccc} X_b \to & X_a \\ f_b \downarrow & \downarrow \\ Y_b \to \partial_a(f) \end{array}$$

with a similar definition for $\partial_c(f)$. For each index we get a map $i_*(f): \partial_*(f) \to Y_*$. We say that f is a cofibration if each of these three maps is. It is a routine exercise (<u>Dwyer-Spalinski</u> Prop.10.6) to verify that this defines a model category structure on **Top**^{*D*}.

An object *X* is cofibrant iff X_b is a CW-complex and the two maps from it are cofibrations. In the example above, the top row is cofibrant but the bottom row is not.

Given a small category J and a model category C, it is not generally clear how to define a model structure on the diagram category C^J . The case of greatest interest to us is $\mathcal{T}_G^{\mathcal{J}_G}$, the category of G-spectra.