Every model category C has a homotopy category Ho(C) obtained from C by formally inverting all weak equivalences. Its objects are those of C, and its morphisms are those of along with inverses of weak equivalences. Hence weak equivalences in C become isomorphisms in Ho(C). There is a functor $\gamma: C \to Ho(C)$ that is the identity on objects. More details will be given later.

We can ask to what extent a functor $F: \mathbb{C} \to \mathbb{D}$ from a model category \mathbb{C} can be factored throught the homotopy category Ho(\mathbb{C}) obtained from \mathbb{C} by formally inverting all weak equivalences. We have a functor $\gamma: \mathbb{C} \to \text{Ho}(\mathbb{C})$. Now consider pairs (G, s) where $G: \text{Ho}(\mathbb{C}) \to D$ and s is a natural transformation from $G\gamma$ to F. A *left derived functor* (LF, t), if it exists, is such a pair with the universal property that any such pair (G, s) admits a unique natural transformation g to LF such that s = t g. In other words it is a *right* Kan extension of F along γ .

Similarly a *right derived functor* RF: Ho(C) $\rightarrow D$ is a left Kan extension of F along γ . In both cases the universal property implies uniqueness. It is customary to omit the natural transformation from the notation.

It can be shown (Prop 9.3 of <u>Dwyer-Spalinski</u>) that a functor F on a model category C which converts weak equivalences between cofibrant objects to weak isomorphisms has a left derived functor LF which agrees with F on cofibrant objects.

Now suppose that $F: \mathbb{C} \to \mathbb{D}$ is a functor between model categories. A total left (right) derived functor $LF(\mathbb{R}F)$ is a left (right) derived functor (and hence a right (left) Kan extension) for the composite $\gamma_{\mathbb{D}}F$.

This notion of a derived functor is related to the one in homological algebra in the following way. For a ring R let \mathbf{Ch}_R denote the category of nonnegatively graded chain complexes of left R-modules. It has a model structure in which weak equivalences are maps inducing isomorphisms in homology (quasi-isomorphisms), fibrations are surjections, and cofibrations are injections with projective cokernel in each degree. This means that the cofibrant objects are chain complexes of projective R-modules. For an R-module N, let K(N, 0) denote the chain complex which is N concentrated in degree 0. It has a cofibrant replacement $P \rightarrow K(N, 0)$ where P is a projective resolution of N.

For a right *R*-module *M*, the functor $M \otimes -$ defines a functor $F: \mathbf{Ch}_R \to \mathbf{Ch}_Z$. It has a total left derived functor $\mathbf{L}F: \operatorname{Ho}(\mathbf{Ch}_R) \to \operatorname{Ho}(\mathbf{Ch}_Z)$. Then it follows from the above that there is a natural isomorphism

 $H_i \mathbf{L}F(K(N, 0)) \cong \operatorname{Tor}_i^R(M, N)$ for all $i \ge 0$.