Inside the proof of the Kervaire invariant theorem
or
How I got bitten by the equivariant bug

Math 549

May 1, 2015

Mike Hill
University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester
Prelude

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.
Prelude

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder’s theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.
Prelude

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder’s theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years.
Prelude

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder’s theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years. I do not expect this job to be completed in my granddaughter’s lifetime.
The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder’s theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years. I do not expect this job to be completed in my granddaughter’s lifetime.
Prelude (continued)

The stable homotopy groups of spheres have been most successfully studied using the Adams spectral sequence and its variants.
Prelude (continued)

The stable homotopy groups of spheres have been most successfully studied using the Adams spectral sequence and its variants.

Chart by Dan Isaksen
This leads us to the **Mahowald Uncertainty Principle**.
This leads us to the **Mahowald Uncertainty Principle**. Any spectral sequence converging to $\pi_* S^0$ with an algebraically computable E_2-term has infinitely many differentials.

Mark Mahowald
1931-2013
Prelude (continued)

This leads us to the **Mahowald Uncertainty Principle**. Any spectral sequence converging to $\pi_* S^0$ with an algebraically computable E_2-term has infinitely many differentials.

Mark Mahowald
1931-2013

Finding differentials in these spectral sequences requires some additional geometric input.
Prelude (continued)

This leads us to the **Mahowald Uncertainty Principle**. Any spectral sequence converging to $\pi_* S^0$ with an algebraically computable E_2-term has infinitely many differentials.

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction.
Prelude (continued)

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction.
Prelude (continued)

Finding differentials in these spectral sequences requires some additional geometric input. **It is often some kind of equivariant construction.** Here are some examples.
Prelude (continued)

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

- In the 60s, Toda used an extended power construction to show that if $x \in \pi_* S^0$ has order p, then $\alpha_1 x^p = 0$.

In the 70s, Nishida extended these ideas to show that each positive dimensional element of $\pi_* S^0$ is nilpotent.

- In the 80s, Devinatz, Hopkins and Smith leveraged these ideas further to prove the Nilpotence Theorem in stable homotopy theory.
Prelude (continued)

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

- In the 60s, Toda used an extended power construction to show that if $x \in \pi_* S^0$ has order p, then $\alpha_1 x^p = 0$.

- In the 70s, Nishida extended these ideas to show that each positive dimensional element of $\pi_* S^0$ is nilpotent.
Prelude (continued)

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

- In the 60s, Toda used an extended power construction to show that if \(x \in \pi_* S^0 \) has order \(p \), then \(\alpha_1 x^p = 0 \).

- In the 70s, Nishida extended these ideas to show that each positive dimensional element of \(\pi_* S^0 \) is nilpotent.

- In the 80s, Devinatz, Hopkins and Smith leveraged these ideas still further to prove the Nilpotence Theorem in stable homotopy theory.
Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra,

Norman Steenrod
1910-1971

Prelude (continued)
Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra, upon which the Adams spectral sequence is based.

Norman Steenrod
1910-1971
Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra, upon which the Adams spectral sequence is based.

Norman Steenrod
1910-1971

Drawing by Bob Bruner
The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle.
The HHR strategy

Browder showed that the Kervaire invariant elements \(\theta_j \in \pi_{2j+1-2} S^0 \) exist iff the Adams spectral sequence element \(h^2_j \) is a permanent cycle. This is known to be true for \(1 \leq j \leq 5 \).
The HHR strategy

Browder showed that the Kervaire invariant elements \(\theta_j \in \pi_{2j+1-2}S^0 \) exist iff the Adams spectral sequence element \(h^2_j \) is a permanent cycle. This is known to be true for \(1 \leq j \leq 5 \). We showed they do not exist for \(j \geq 7 \).
The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2} S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case $j = 6$ remains open.
The HHR strategy

Browder showed that the Kervaire invariant elements \(\theta_j \in \pi_{2j+1-2}S^0 \) exist iff the Adams spectral sequence element \(h_j^2 \) is a permanent cycle. This is known to be true for \(1 \leq j \leq 5 \). We showed they do not exist for \(j \geq 7 \). The case \(j = 6 \) remains open.

Our strategy is to construct a nonconnective ring spectrum \(\Omega \) having a unit map \(S^0 \to \Omega \) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each \(\theta_j \) is nontrivial. This means that if \(\theta_j \) exists, we will see its image in \(\pi_\ast(\Omega) \).

(ii) Periodicity Theorem. It is 256-periodic, meaning that \(\pi_k(\Omega) \) depends only on the reduction of \(k \) modulo 256.

(iii) Gap Theorem. \(\pi_k(\Omega) = 0 \) for \(-4 < k < 0 \). This property is our zinger. Its proof involves a new tool we call the slice spectral sequence.
The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2}S^0$ exist iff the Adams spectral sequence element h^2_j is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case $j = 6$ remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial.
The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2}S^0$ exist iff the Adams spectral sequence element h^2_j is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case $j = 6$ remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.
The HHR strategy

Browder showed that the Kervaire invariant elements \(\theta_j \in \pi_{2j+1-2}S^0 \) exist iff the Adams spectral sequence element \(h_j^2 \) is a permanent cycle. This is known to be true for \(1 \leq j \leq 5 \). We showed they do not exist for \(j \geq 7 \). The case \(j = 6 \) remains open.

Our strategy is to construct a nonconnective ring spectrum \(\Omega \) having a unit map \(S^0 \rightarrow \Omega \) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each \(\theta_j \) is nontrivial. This means that if \(\theta_j \) exists, we will see its image in \(\pi_*(\Omega) \).

(ii) Periodicity Theorem. It is 256-periodic, meaning that \(\pi_k(\Omega) \) depends only on the reduction of \(k \) modulo 256.
The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2}S^0$ exist iff the Adams spectral sequence element h^2_j is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case $j = 6$ remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_k(\Omega) = 0$ for $-4 < k < 0$.

The HHR strategy

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2j+1-2} S^0$ exist iff the Adams spectral sequence element h^2_j is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case $j = 6$ remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence.
The HHR strategy (continued)

Here again are the properties of Ω:

(i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_* (\Omega)$.

(ii) Periodicity Theorem. $\pi_k (\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_{-2} (\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254} (\Omega) = 0$. If $\theta_7 \in \pi_{254} (S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.

The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.
Here again are the properties of Ω:

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.
The HHR strategy (continued)

Here again are the properties of Ω:

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_\ast(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S_0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.

The argument for θ_j for larger j is similar, since $|\theta_j| = 2^j - 2 \equiv -2 \mod 256$ for $j \geq 7$.

The HHR strategy (continued)

Here again are the properties of Ω:

(i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) Periodicity Theorem. $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.
Here again are the properties of Ω:

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.

The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega = 0$.
The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2} \Omega = 0$. The Detection Theorem is proved with methods available 20 years ago.
The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2} \Omega = 0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence.
The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega = 0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence. The Gap Theorem boils down to a surprisingly easy calculation once the machinery has been set up.
The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega = 0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence. The Gap Theorem boils down to a surprisingly easy calculation once the machinery has been set up.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this,
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight,
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞-categories!
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞-categories!

The experts like to do this for compact Lie groups G.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞-categories!

The experts like to do this for compact Lie groups G, but we only need cyclic groups of order 2, 4 and 8.
Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. **You do not need to worry about G-complete universes or ∞-categories!**

The experts like to do this for compact Lie groups G, but we only need cyclic groups of order 2, 4 and 8. **We will assume from now on that G is finite.**
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces;
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G.
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \rightarrow \mathcal{T}^H$.
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$,

Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction.
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i^*_H X)$$
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \rightarrow \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \rightarrow \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i^*_H X) \quad \text{and} \quad \mathcal{T}^H(i^*_H X, Y) = \mathcal{T}^G(X, RY).$$
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i^*_H : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i^*_H X) \quad \text{and} \quad \mathcal{T}^H(i^*_H X, Y) = \mathcal{T}^G(X, RY).$$

It turns out that

$$LY = \bigvee_{|G/H|} Y = G_+ \wedge^H Y,$$
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i_H^* : \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i_H^*X) \quad \text{and} \quad \mathcal{T}^H(i_H^*X, Y) = \mathcal{T}^G(X, RY).$$

It turns out that

$$LY = \bigvee_{[G/H]} Y = G_+ \wedge_H Y,$$

where G permutes the H-invariant wedge summands, and G_+ denotes G with a disjoint basepoint.
Two useful functors

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ there is a forgetful functor $i_H^* : \mathcal{T}^G \rightarrow \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \rightarrow \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i_H^*X) \quad \text{and} \quad \mathcal{T}^H(i_H^*X, Y) = \mathcal{T}^G(X, RY).$$

It turns out that

$$LY = \bigvee_{[G/H]} Y = G_+ \wedge_H Y,$$

where G permutes the H-invariant wedge summands, and G_+ denotes G with a disjoint basepoint. We can define a similar functor from H-spectra to G-spectra.
Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i_H^*. This means

$$T^G(LY, X) = T^H(Y, i_H^*X) \quad \text{and} \quad T^H(i_H^*X, Y) = T^G(X, RY).$$

It turns out that

$$LY = G_+ \wedge_H Y \quad \text{and} \quad RY = \prod_{|G/H|} Y,$$
Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i_H^*. This means

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i_H^*X) \quad \text{and} \quad \mathcal{T}^H(i_H^*X, Y) = \mathcal{T}^G(X, RY).$$

It turns out that

$$LY = G_+ \bigwedge_H Y \quad \text{and} \quad RY = \prod_{|G/H|} Y,$$

where G permutes the H-invariant factors Y.
Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i^*_H. This means

$$T^G(LY, X) = T^H(Y, i^*_H X) \quad \text{and} \quad T^H(i^*_H X, Y) = T^G(X, RY).$$

It turns out that

$$LY = G_+ \wedge^H Y \quad \text{and} \quad RY = \prod_{|G/H|} Y,$$

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

\[L_Y = G_+ \wedge^H Y \quad \text{and} \quad R_Y = \prod_{|G/H|} Y, \]
Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i_H^*. This means

$$T^G(LY, X) = T^H(Y, i_H^*X) \quad \text{and} \quad T^H(i_H^*X, Y) = T^G(X, RY).$$

It turns out that

$$LY = G_+ \wedge_H Y \quad \text{and} \quad RY = \prod_{|G/H|} Y,$$

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

$$\mathcal{N}^G_H Y := \bigwedge_{|G/H|} Y,$$
Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i_H^*. This means

$$\mathcal{T}^G(LY, X) = \mathcal{T}^H(Y, i_H^*X) \quad \text{and} \quad \mathcal{T}^H(i_H^*X, Y) = \mathcal{T}^G(X, RY).$$

It turns out that

$$LY = G_+ \wedge_H Y \quad \text{and} \quad RY = \prod_{|G/H|} Y,$$

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

$$\mathcal{N}^G_H Y := \wedge_{|G/H|} Y,$$

the norm functor on Y.
Representation spheres

Let V be a finite dimensional orthogonal representation of G.
Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G, the vector space $\mathbb{R}[G]$ where G acts by left multiplication.
Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G, the vector space $\mathbb{R}[G]$ where G acts by left multiplication.

S^V denotes both the one point compactification of V, with basepoint at ∞, and the corresponding suspension spectrum.
Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G, the vector space $\mathbb{R}[G]$ where G acts by left multiplication.

S^V denotes both the one point compactification of V, with basepoint at ∞, and the corresponding suspension spectrum. It follows that $S^V + V' = S^V \wedge S^{V'}$.
Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G, the vector space $\mathbb{R}[G]$ where G acts by left multiplication.

S^V denotes both the one point compactification of V, with basepoint at ∞, and the corresponding suspension spectrum. It follows that $S^{V+V'} = S^V \wedge S^{V'}$.

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0.
Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G, the vector space $\mathbb{R}[G]$ where G acts by left multiplication.

S^V denotes both the one point compactification of V, with basepoint at ∞, and the corresponding suspension spectrum. It follows that $S^{V+V'} = S^V \wedge S^{V'}$.

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0 which is a homotopy equivalence,
Representation spheres

Let \(V \) be a finite dimensional orthogonal representation of \(G \). The key example for us is the regular representation \(\rho_G \), the vector space \(\mathbb{R}[G] \) where \(G \) acts by left multiplication.

\(S^V \) denotes both the one point compactification of \(V \), with basepoint at \(\infty \), and the corresponding suspension spectrum. It follows that \(S^{V+V'} = S^V \wedge S^{V'} \).

There is a way to define a spectrum \(S^{-V} \) with a map from \(S^{-V} \wedge S^V \) to the sphere spectrum \(S^0 \) which is a homotopy equivalence, but not an isomorphism.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0 which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0 which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi^G_W X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \land S^V$ to the sphere spectrum S^0 which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi^G_W X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps. Thus we have homotopy groups graded over $RO(G)$, the orthogonal representation ring of G.
Representation spheres (continued)

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0 which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi^G_W X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps. Thus we have homotopy groups graded over $RO(G)$, the orthogonal representation ring of G. We denote these collectively by $\pi_*^G X$.
For a finite dimensional orthogonal representation W of $H \subseteq G$,

Representation spheres (continued)
For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W, and get G-spectra.
Representation spheres (continued)

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W, and get G-spectra

$$G_+ \wedge_H S^W$$

and
For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W, and get G-spectra

$$G^+ \wedge_H S^W$$

and

$$N^G_H S^W = S^{\text{Ind}_H^G} W,$$
Representation spheres (continued)

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W, and get G-spectra

$$G_+ \wedge_H S^W$$

and

$$N_H^G S^W = S \text{Ind}_H^G W,$$

where $\text{Ind}_H^G W$ denotes the induced representation $R[G] \otimes_{R[H]} W$.
Real cobordism

Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum.
Real cobordism

Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category.
Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category. Recall that

$$\pi_* MU = \mathbb{Z}[r_1, r_2, \ldots]$$

where $r_i \in \pi_{2i}$.

It has a C_2-action defined in terms of complex conjugation.
Real cobordism

Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category. Recall that

$$\pi_* MU = \mathbb{Z}[r_1, r_2, \ldots] \quad \text{where} \quad r_i \in \pi_{2i}.$$

It has a C_2-action defined in terms of complex conjugation.

We denote the resulting C_2-spectrum by MU_R.
Real cobordism (continued)

The C_2-spectrum MU_R has been studied extensively.
Real cobordism (continued)

The C_2-spectrum MU_R has been studied extensively.

Peter Landweber
Real cobordism (continued)

The C_2-spectrum MU_R has been studied extensively.

Peter Landweber

Shoro Araki
1930–2005
Real cobordism (continued)

The C_2-spectrum MU_R has been studied extensively.

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki
1930–2005
Real cobordism (continued)

The C_2-spectrum MU_R has been studied extensively.

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki
1930–2005

Nitu Kitchloo

Steve Wilson
For a G-spectrum X, we let $\pi^u_* X$ denote the homotopy of the underlying ordinary spectrum.
Real cobordism (continued)

For a G-spectrum X, we let $\pi^u_* X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum $MU_\mathbb{R}$ with

$$\pi^u_* MU_\mathbb{R} = \mathbb{Z}[r_1, r_2, \ldots] \quad \text{where} \quad r_i \in \pi_{2i}.$$
Real cobordism (continued)

For a G-spectrum X, we let $\pi^u_* X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum MU_R with

$$\pi^u_* MU_R = \mathbb{Z}[r_1, r_2, \ldots]$$

where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator.
Real cobordism (continued)

For a G-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum MU_R with

$$\pi_*^u MU_R = \mathbb{Z}[r_1, r_2, \ldots] \quad \text{where } r_i \in \pi_{2i}.$$

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u MU_R$ is determined by $\gamma(r_i) = (-1)^i r_i$.
Real cobordism (continued)

For a G-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum MUR with

$$\pi_*^u MUR = \mathbb{Z}[r_1, r_2, \ldots] \quad \text{where} \quad r_i \in \pi_{2i}.$$

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u MUR$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i : S^{2i} \to MU$ underlies an equivariant map
Real cobordism (continued)

For a G-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum MU_R with

$$\pi_*^u MU_R = \mathbb{Z}[r_1, r_2, \ldots] \quad \text{where } r_i \in \pi_{2i}.$$

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u MU_R$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i : S^{2i} \rightarrow MU$ underlies an equivariant map

$$S^{i\rho_2} \xrightarrow{\bar{r}_i} MU_R$$

where ρ_2 denotes the regular representation of C_2.
Real cobordism (continued)

For a G-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2-spectrum MU_R with

$$\pi_*^u MU_R = \mathbb{Z}_r, r_2, \ldots$$

where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u MU_R$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i : S^{2i} \to MU$ underlies an equivariant map

$$S^i \rho_2 \xrightarrow{\bar{r}_i} MU_R$$

where ρ_2 denotes the regular representation of C_2. We say that \bar{r}_i refines r_i.

Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^{G}_{C_2} MU_R$, which we abbreviate by $MU^{((G))}$.
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^G_{C_2} MU_R$, which we abbreviate by $MU((G))$. It is underlain by the 4-fold smash power $MU^\wedge 4$.
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^G_{C_2} MU_R$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^\wedge 4$ with the group G permuting the C_2-invariant factors.
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^G_{C_2} \mathcal{M}U_R$, which we abbreviate by $\mathcal{M}U^{((G))}$. It is underlain by the 4-fold smash power $\mathcal{M}U^{\wedge 4}$ with the group G permuting the C_2-invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi^G_{19\rho_8} \mathcal{M}U^{((G))}$.
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^G_{C_2} MU_R$, which we abbreviate by $MU^{((G)})$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2-invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi^G_{19\rho_8} MU^{((G)})$. $D^{-1} MU^{((G)})$ is the telescope for the diagram

$$
MU^{((G))} \xrightarrow{D} \Sigma^{-19\rho_8} MU^{((G))} \xrightarrow{D} \Sigma^{-38\rho_8} MU^{((G))} \xrightarrow{D} \ldots
$$
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N^G_{C_2} \mathcal{M}U_R$, which we abbreviate by $\mathcal{M}U^{((G))}$. It is underlain by the 4-fold smash power $\mathcal{M}U^\wedge 4$ with the group G permuting the C_2-invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi^G_{19\rho_8} \mathcal{M}U^{((G))}$. $D^{-1} \mathcal{M}U^{((G))}$ is the telescope for the diagram

$$\begin{array}{ccc}
\mathcal{M}U^{((G))} & \xrightarrow{D} & \Sigma^{-19\rho_8} \mathcal{M}U^{((G))} \\
& \xrightarrow{D} & \Sigma^{-38\rho_8} \mathcal{M}U^{((G))} \\
& \xrightarrow{D} & \ldots
\end{array}$$

Calculations show that there is an element $\Delta \in \pi^G_{256} D^{-1} \mathcal{M}U^{((G))}$ such that the induced map

$$\begin{array}{ccc}
\Sigma^{256} D^{-1} \mathcal{M}U^{((G))} & \xrightarrow{\Delta} & D^{-1} \mathcal{M}U^{((G))}
\end{array}$$

is an equivariant homotopy equivalence.
Constructing our spectrum Ω

For $G = C_8$, we can form the norm $N_{C_2}^G MU_R$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^\wedge 4$ with the group G permuting the C_2-invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi_{19 \rho_8}^G MU^{((G))}$. $D^{-1} MU^{((G))}$ is the telescope for the diagram

$$MU^{((G))} \xrightarrow{D} \Sigma^{-19 \rho_8} MU^{((G))} \xrightarrow{D} \Sigma^{-38 \rho_8} MU^{((G))} \xrightarrow{D} \ldots$$

Calculations show that there is an element $\Delta \in \pi_{256}^G D^{-1} MU^{((G))}$ such that the induced map

$$\Sigma^{256} D^{-1} MU^{((G))} \xrightarrow{\Delta} D^{-1} MU^{((G))}$$

is an equivariant homotopy equivalence. Our Ω is the G-fixed point spectrum of $D^{-1} MU^{((G))}$.
The slice spectral sequence

How do we make such calculations?
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration.
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_nX\}$.

The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_n X\}$. The cofiber of the map $P_{n+1} X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n.
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n−1)$-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX.
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_n X\}$. The cofiber of the map $P_{n+1} X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by $P^n X$.

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence.
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_n X\}$. The cofiber of the map $P_{n+1} X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by $P^n X$.

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before:
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_n X\}$. The cofiber of the map $P_{n+1} X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by $P^n X$.

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before: it is useless.
The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its $(n - 1)$-connected covers $\{P_n X\}$. The cofiber of the map $P_{n+1} X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by $P^n X$.

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before: it is useless. Its input and output are both $\pi_* X$.

The slice spectral sequence (continued)

Nevertheless, there is a useful formalism associated with the Postnikov tower.
Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n \mathcal{S}$, the category of $(n - 1)$-connected spectra,
Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of $(n - 1)$-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set
The slice spectral sequence (continued)

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of $(n - 1)$-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{ S^m : m \geq n \}$$
The slice spectral sequence (continued)

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of $(n - 1)$-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{ S^m : m \geq n \}$$

and closed under mapping cones, infinite wedges and retracts.
Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that P_nS, the category of $(n - 1)$-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{ S^m : m \geq n \}$$

and closed under mapping cones, infinite wedges and retracts. Hence the cofiber of a map between $(n - 1)$-connected spectra is again $(n - 1)$-connected,
Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of $(n - 1)$-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{ S^m : m \geq n \}$$

and closed under mapping cones, infinite wedges and retracts. Hence the cofiber of a map between $(n - 1)$-connected spectra is again $(n - 1)$-connected, but the fiber of such a map need not be.
The slice spectral sequence for $G = C_2$

Again, P_n^S, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$
The slice spectral sequence for \(G = \mathbb{C}_2 \)

Again, \(P_n^S \), the category of \((n-1)\)-connected spectra, is generated by the set

\[
T_n = \{ S^m : m \geq n \}.
\]

We need an equivariant generalization of the set \(T_n \).
The slice spectral sequence for $G = C_2$

Again, P_n^S, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$G^+ \wedge S^m$ and S^m_{ρ}.

Here $G^+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

S^m_{ρ} is the one point compactification of m_{ρ}, where ρ denotes the regular representation of C_2. It is underlain by S^2m.
The slice spectral sequence for $G = C_2$

Again, P_n, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$

We need an equivariant generalization of the set T_n.

For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \text{ and } S^{m\rho}.$$
The slice spectral sequence for $G = C_2$

Again, P_n^S, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \text{ and } S^{mp}.$$

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

Again, P_n^S, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \text{ and } S^{mp}.$$

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

Again, P_n^S, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$
The slice spectral sequence for $G = C_2$

Again, P_n^S, the category of $(n-1)$-connected spectra, is generated by the set

$$T_n = \{S^m : m \geq n\}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \text{ and } S^{m\rho}.$$

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

$S^{m\rho}$ is the one point compactification of $m\rho$.

The slice spectral sequence for $G = C_2$

Again, $P_n S$, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{S^m : m \geq n\}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \land S^m \text{ and } S^{m\rho}.$$

Here $G_+ \land S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

$S^{m\rho}$ is the one point compactification of $m\rho$, where ρ denotes the regular representation of C_2.
The slice spectral sequence for $G = C_2$

Again, P_nS, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{S^m: m \geq n\}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \text{ and } S^{m_\rho}.$$

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

S^{m_ρ} is the one point compactification of m_ρ, where ρ denotes the regular representation of C_2. It is underlain by S^{2m}.

The slice spectral sequence for $G = C_2$

Again, P_n, the category of $(n - 1)$-connected spectra, is generated by the set

$$T_n = \{ S^m : m \geq n \}.$$

We need an equivariant generalization of the set T_n. For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m \quad \text{and} \quad S^{m\rho}.$$

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

$S^{m\rho}$ is the one point compactification of $m\rho$, where ρ denotes the regular representation of C_2. It is underlain by S^{2m}.

We will call these spectra slice spheres.
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \}.$$
For $G = C_2$ the generalization of

$$T_n = \{S^m : m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m : m \geq n\} \cup \{S^{m\rho} : 2m \geq n\}.$$

Let S^G denote the category of G-spectra.
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

\[T_n = \{ S^m : m \geq n \} \]

is

\[T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \} . \]

Let S^G denote the category of G-spectra. Define $P_n S^G$ to be the subcategory generated by the elements of T_n^G,

\[P_n S^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \} . \]
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m \rho} : 2m \geq n \}.$$

Let S^G denote the category of G-spectra. Define $P_n S^G$ to be the subcategory generated by the elements of T_n^G, i.e., by slice spheres of dimension $\geq n$.

\(\text{[Continue reading]} \)
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \}.$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G, i.e., by slice spheres of dimension $\geq n$.

This filtration of S^G leads to the slice spectral sequence.
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m_\rho} : 2m \geq n \}.$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G, i.e., by slice spheres of dimension $\geq n$.

This filtration of S^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful.
The slice spectral sequence for \(G = C_2 \) (continued)

For \(G = C_2 \) the generalization of

\[
T_n = \{ S^m : m \geq n \}
\]

is

\[
T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m_\rho} : 2m \geq n \}.
\]

Let \(S^G \) denote the category of \(G \)-spectra. Define \(P_n S^G \) to be the subcategory generated by the elements of \(T_n^G \), i.e., by slice spheres of dimension \(\geq n \).

This filtration of \(S^G \) leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor \(S^G \rightarrow S \).
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T^n_G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \}.$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T^n_G, i.e., by slice spheres of dimension $\geq n$.

This filtration of S^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $S^G \to S$. For a G-spectrum X it enables us to define G-analogs of connective covers.
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{S^m : m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m : m \geq n\} \cup \{S^{m\rho} : 2m \geq n\}.$$

Let S^G denote the category of G-spectra. Define $P_n S^G$ to be the subcategory generated by the elements of T_n^G, i.e., by slice spheres of dimension $\geq n$.

This filtration of S^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $S^G \to S$. For a G-spectrum X it enables us to define G-analogs of connective covers. The nth slice $P_n X$ is the cofiber of the map $P_{n+1} X \to P_n X$,

"
The slice spectral sequence for $G = C_2$ (continued)

For $G = C_2$ the generalization of

$$T_n = \{ S^m : m \geq n \}$$

is

$$T_n^G = \{ G_+ \wedge S^m : m \geq n \} \cup \{ S^{m\rho} : 2m \geq n \} .$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G, i.e., by slice spheres of dimension $\geq n$.

This filtration of S^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $S^G \to S$. For a G-spectrum X it enables us to define G-analogs of connective covers. The nth slice $P_n^G X$ is the cofiber of the map $P_{n+1} X \to P_n X$, just as in the classical case.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define $G^+ \wedge H S^m \rho_H$ to be a slice sphere of dimension $m|H|$, where ρ_H is the regular representation. Then we define $T_G n = \{ G^+ \wedge H S^m \rho_H : m|H| \geq n, H \subseteq G \}$, the set of slice spheres of dimension $\geq n$.

The case $G = C_2$

The slice spectral sequence for MU_R

The proof of the Gap Theorem
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, the slice spectral sequence for general groups G
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \land_H S^{m_{\rho_H}}$$

to be a slice sphere of dimension $m|H|$, where ρ_H is the regular representation.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \wedge_H S^{m\rho_H}$$

to be a slice sphere of dimension $m|H|$, where ρ_H is the regular representation.
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n - 1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \wedge_H S^{m\rho_H}$$

to be a slice sphere of dimension $m|H|$, where ρ_H is the regular representation. Then we define

$$T^G_n = \left\{ G_+ \wedge_H S^{m\rho_H} : m|H| \geq n, H \subseteq G \right\},$$
The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be $(n-1)$-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \wedge_H S^{m \rho_H}$$

To be a slice sphere of dimension $m|H|$, where ρ_H is the regular representation. Then we define

$$T_n^G \equiv \left\{ G_+ \wedge_H S^{m \rho_H} : m|H| \geq n, \ H \subseteq G \right\},$$

the set of slice spheres of dimension $\geq n$.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX.
We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^n_nX as before.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” $P^n X$ and slices P^n_nX as before.

Determining the slices of a G-spectrum X is not easy in general.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^*_nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper,
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^n_nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^n_nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n,
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” $P_n X$, “Postnikov sections” $P^n X$ and slices $P^n_n X$ as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P^n_n X = W_n \wedge H\mathbb{Z},$$
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^n_nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P^n_nX = W_n \wedge H\mathbb{Z},$$

where W_n is a wedge of n-dimensional slice spheres.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” P_nX, “Postnikov sections” P^nX and slices P^n_nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P^n_nX = W_n \wedge H\mathbb{Z},$$

where W_n is a wedge of n-dimensional slice spheres and $H\mathbb{Z}$ is the integer Eilenberg-Mac Lane spectrum with trivial G-action.
The slice spectral sequence for general groups G (continued)

We use the resulting filtration of S^G to define “connective covers” $P_n X$, “Postnikov sections” $P^n X$ and slices $P^n_n X$ as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P^n_n X = W_n \wedge \mathbb{H}Z,$$

where W_n is a wedge of n-dimensional slice spheres and $\mathbb{H}Z$ is the integer Eilenberg-Mac Lane spectrum with trivial G-action. W_n never has a wedge summand of the form $G_+ \wedge S^n$.

The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for MU_R.

Prelude
- Browder's theorem
- The Adams spectral sequence
- The Mahowald Uncertainty Principle
- Differentials

The HHR strategy
- The spectrum Ω

Equivariant stable homotopy theory
- Two useful functors
- Representation spheres
- Real cobordism
- Constructing our spectrum Ω

The slice spectral sequence
- The case $G = C_2$
- General G

The proof of the Gap Theorem
The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.
The slice spectral sequence for MU_R
We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.
The slice spectral sequence for MU_R
We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them.
The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between MU and MO, between complex and unoriented cobordism.
The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between MU and MO, between complex and unoriented cobordism.
The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for MU_R, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between MU and MO, between complex and unoriented cobordism.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \wedge_{H} H S^{mH} \wedge H\mathbb{Z}$$

for integers m and nontrivial subgroups $H \subseteq G$.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \wedge_H S^{m\rho_H} \wedge H\mathbb{Z}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K_{m,H}^G$, the G-fixed point spectrum of $K_{m,H}$.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \wedge_H S^{m \rho H} \wedge H\mathbb{Z}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K_{m,H}^G$, the G-fixed point spectrum of $K_{m,H}$.

We will show that $\pi_{-2}K_{m,H}^G$ vanishes in every case.
The proof of the Gap Theorem

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU((G))$, where $G = C_8$.

The homotopy of $D^{-1}MU((G))$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \wedge_H S^{m\rho_H} \wedge H\mathbb{Z}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K^G_{m,H}$, the G-fixed point spectrum of $K_{m,H}$.

We will show that $\pi_{-2}K^G_{m,H}$ vanishes in every case.

$\pi_{-2}\Omega$ never had a chance!
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K^G_{m,H}$?
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K^G_{m,H}$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$.

How I got bitten
Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem
The Adams spectral sequence
The Mahowald Uncertainty Principle
Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum Ω

The slice spectral sequence
The case $G = C_2$
General G
The slice spectral sequence for MU_R

The proof of the Gap Theorem
The proof of the Gap Theorem (continued)

How do we compute $\pi_*^G K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi_*^u K_{m,H} = \pi_*^u G_+ \wedge_{H} S^{m \rho_H} \wedge H\mathbb{Z}$$

$$= H_*^u G_+ \wedge_{H} S^{m \rho_H} \quad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^{|H|}.$$
How do we compute $\pi_* K^G_{m,H}$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi^u_* K_{m,H} = \pi^u_* G_+ \wedge^H S^{m\rho_H} \wedge H\mathbb{Z}$$

$$= H^u_* G_+ \wedge^H S^{m\rho_H} \quad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^m |H|.$$

$G_+ \wedge^H S^{m\rho_H}$ is a finite G-CW complex.
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K^G_{m,H}$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi_* K_{m,H} = \pi_* G_+ \wedge_H S^{m \rho H} \wedge H\mathbb{Z}$$

$$= H_* G_+ \wedge_H S^{m \rho H} \quad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^m H.$$

$G_+ \wedge_H S^{m \rho H}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_{m,H}^*$ of $\mathbb{Z}[G]$-modules.
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi_* K_{m,H} = \pi_*^G \mathbb{P}^{m \rho_H} \wedge H\mathbb{Z}$$

$$= H_*^{G+} \wedge H \mathbb{Z}$$

(underlying homology)

$$= \bigoplus_{|G/H|} H_* S^m H$$

$G+ \wedge H \mathbb{Z}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_{*,H}^m$ of $\mathbb{Z}[G]$-modules. Describing it is a geometric exercise.
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K^G_{m,H}$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi_* K_{m,H} = \pi_* G_+ \wedge_H S^{mpH} \wedge H\mathbb{Z}$$

$$= H_* G_+ \wedge_H S^{mpH} \quad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^m|H|.$$

$G_+ \wedge_H S^{mpH}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_{*,H}^m$ of $\mathbb{Z}[G]$-modules. Describing it is a geometric exercise.

For $G_+ \wedge_H S^{-mpH}$, we can use the \mathbb{Z}-linear dual of $C_{*,H}^m$,

π∗Km,H = π∗G+ ∧H SmρH ∧HZ

= H∗ G+ ∧H SmρH (underlying homology)

= ⊕ |G/H| H∗ Sm|H|.

G+ ∧H SmρH is a finite G-CW complex. This means that it has a reduced cellular chain complex C∗,Hm of Z[G]-modules. Describing it is a geometric exercise.
The proof of the Gap Theorem (continued)

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \geq 0$. We have

$$\pi_* K_{m,H} = \pi_* G_+ \wedge_H S^{m\rho_H} \wedge H\mathbb{Z}$$

$$= H_* G_+ \wedge_H S^{m\rho_H} \quad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^m|H|.$$

$G_+ \wedge_H S^{m\rho_H}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C^{m,H}_*$ of $\mathbb{Z}[G]$-modules. Describing it is a geometric exercise.

For $G_+ \wedge_H S^{-m\rho_H}$, we can use the \mathbb{Z}-linear dual of $C^{m,H}_*$, which we denote by $C^{-m,H}_*$.

The proof of the Gap Theorem (continued)

It follows that

$$\pi_* K^G_{m,H} = H_* \left((C^{m,H})^G \right)$$

for all m and H.

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$.
The proof of the Gap Theorem (continued)

It follows that

$$\pi_\ast K^G_{m,H} = H_\ast \left((C^{m,H})^G \right) \quad \text{for all } m \text{ and } H.$$

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$. First we need
The proof of the Gap Theorem (continued)

It follows that

\[\pi_* K^G_{m,H} = H_* \left((C^{m,H})^G \right) \quad \text{for all } m \text{ and } H. \]

We now analyze \(C^{m,H} \) and \((C^{m,H})^G \) for \(m \geq 0 \). First we need

WARNING Fixed points do not commute with smash products,
The proof of the Gap Theorem (continued)

It follows that

$$\pi_* K_{m,H}^G = H_* \left((C^{m,H})^G \right)$$

for all m and H.

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$. First we need

WARNING Fixed points do not commute with smash products, so $(G_+ \wedge S^{m_H} \wedge H\mathbb{Z})^G$ is not the same as $(G_+ \wedge H\mathbb{Z})^G \wedge H\mathbb{Z}$.
The proof of the Gap Theorem (continued)

It follows that

$$
\pi_* K^G_{m,H} = H_* \left((C^{m,H})^G \right) \quad \text{for all } m \text{ and } H.
$$

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$. First we need

\begin{verbatim}
WARNING Fixed points do not commute with smash products, so $(G_+ \wedge H^{m\rho_H} \wedge HZ)^G$ is not the same as $(G_+ \wedge H^{m\rho_H})^G \wedge HZ$, and $H_* \left((C^{m,H})^G \right)$ is not the homology of $(G_+ \wedge H^{m\rho_H})^G = \left\{ \begin{array}{ll} S^m & \text{for } H = G \\ * & \text{otherwise.} \end{array} \right.$
\end{verbatim}
We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$.
We are analyzing $C^m,^H$ and $(C^m,^H)^G$ for $m \geq 0$. The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m,
The proof of the Gap Theorem (continued)

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$. The bottom G-cell of $G_+ \smash[b]{\wedge_{H} S^{m\rho_H}}$ is

$$(G_+ \smash[b]{\wedge_{H} S^{m\rho_H}})^H = G_+ \smash[b]{\wedge_{H} S^{m}}$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C_{-m,H}$, H, $C_{-m-1,H}$, and their fixed point subcomplexes.
The proof of the Gap Theorem (continued)

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \geq 0$. The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m, while the top cell is in dimension $m |H|$. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.
The proof of the Gap Theorem (continued)

The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.
The proof of the Gap Theorem (continued)

The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \geq 0$, $\pi_i K^G_{m,H}$ is trivial unless $m \leq i \leq m|H|$.
The proof of the Gap Theorem (continued)

The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \geq 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \leq i \leq m|H|$, and $\pi_i K_{-m,H}^G$ is trivial unless $-m \geq i \geq -m|H|$.
The proof of the Gap Theorem (continued)

The bottom G-cell of $G_+ \wedge_{H} S^{m\rho_H}$ is

$$(G_+ \wedge_{H} S^{m\rho_H})^H = G_+ \wedge_{H} S^m$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \geq 0$, $\pi_i K^G_{m,H}$ is trivial unless $m \leq i \leq m|H|$, and $\pi_i K^G_{-m,H}$ is trivial unless $-m \geq i \geq -m|H|$.

For the Gap Theorem we want to show that $\pi_{-2} K^{G}_{m,H} = 0$ in all cases.
The proof of the Gap Theorem (continued)

The bottom G-cell of $G_+ \wedge_H S^{m\rho_H}$ is

$$(G_+ \wedge_H S^{m\rho_H})^H = G_+ \wedge_H S^m$$

in dimension m, while the top cell is in dimension $m|H|$. Similar statements hold for $C^{m,H}, C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \geq 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \leq i \leq m|H|$, and $\pi_i K_{-m,H}^G$ is trivial unless $-m \geq i \geq -m|H|$.

For the Gap Theorem we want to show that $\pi_{-2} K_{m,H}^G = 0$ in all cases. From the above we see that the only values of m we need to consider are $m = -1$ and $m = -2$.
The proof of the Gap Theorem (continued)

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.
The proof of the Gap Theorem (continued)

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$,

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m, H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.
The proof of the Gap Theorem (continued)

For the Gap Theorem we want to show that $\pi_{-2}K^G_{m,H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For simplicity I will do this for $H = G = C_2
The proof of the Gap Theorem (continued)

For the Gap Theorem we want to show that $\pi_{-2}K^G_{m,H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For $m = 1$, C^1,C_2 is the reduced C_2-cellular chain complex for S^{ρ_2}. It is

$$
\begin{array}{ccc}
1 & 2 \\
\mathbb{Z} & \nabla & \mathbb{Z}[C_2]
\end{array}
$$

where ∇ is the augmentation map sending the generator γ to 1.
The proof of the Gap Theorem (continued)

For the Gap Theorem we want to show that $\pi_{-2} K^G_{m,H} = 0$ in all cases, and the only values of m we need to consider are $m = -1$ and $m = -2$.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For $m = 1$, C^1, C_2 is the reduced C_2-cellular chain complex for S^{ρ_2}. It is

\[
\begin{array}{c}
1 \\
\mathbb{Z} \\
\end{array} \xleftarrow{\nabla} \begin{array}{c}
2 \\
\mathbb{Z}[C_2] \\
\end{array}
\]

where ∇ is the augmentation map sending the generator γ to 1.

Its \mathbb{Z}-linear dual C^{-1}, C_2 is

\[
\begin{array}{c}
-1 \\
\mathbb{Z} \\
\end{array} \xrightarrow{\Delta} \begin{array}{c}
-2 \\
\mathbb{Z}[C_2] \\
\end{array}
\]

where Δ is the diagonal embedding sending 1 to $1 + \gamma$.
The proof of the Gap Theorem (continued)

C^{-1, C_2} is

\[
\begin{array}{ccc}
-1 & & -2 \\
\mathbb{Z} & \xrightarrow{\Delta} & \mathbb{Z}[C_2]
\end{array}
\]

where Δ is the diagonal embedding sending 1 to $1 + \gamma$.
The proof of the Gap Theorem (continued)

C^{-1, C_2} is

$$
\begin{pmatrix}
-1 & -2 \\
\end{pmatrix}
$$

\[Z \xrightarrow{\Delta} Z[C_2] \]

where Δ is the diagonal embedding sending 1 to $1 + \gamma$.

Passing to fixed points gives

$$
\begin{pmatrix}
-1 & -2 \\
\end{pmatrix}
$$

\[Z \xrightarrow{1} Z \]
The proof of the Gap Theorem (continued)

\[C_{-1, C_2} \]

\[
\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z}^2 \end{array}
\xrightarrow{\Delta}
\begin{array}{c}
\mathbb{Z}[C_2] \\
\mathbb{Z} \end{array}
\]

where \(\Delta \) is the diagonal embedding sending 1 to \(1 + \gamma \).

Passing to fixed points gives

\[
\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z} \end{array}
\xrightarrow{1}
\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z} \\
\mathbb{Z} \end{array}
\]

This has trivial homology, so \(\pi_{-2} K_{C_2}^{C_2} = 0 \).
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2, C_2} is

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \xrightarrow{\Delta} & \mathbb{Z}[C_2] \xrightarrow{1-\gamma} \mathbb{Z}[C_2]
\end{array}
$$

Passing to fixed points gives

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \xrightarrow{\Delta} & \mathbb{Z}[C_2] \xrightarrow{1-\gamma} \mathbb{Z}[C_2]
\end{array}
$$

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2} K C_2 = 0$.

This completes the proof of the Gap Theorem.
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2, C_2} is

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \rightarrow & \mathbb{Z}[C_2] \\
\Delta & & 1-\gamma \\
\rightarrow & & \rightarrow \\
\mathbb{Z}[C_2] & &
\end{array}
$$

Passing to fixed points gives

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \rightarrow & \mathbb{Z} \\
1 & & 0 \\
\rightarrow & & \rightarrow \\
\mathbb{Z} & &
\end{array}
$$

Passing to fixed points gives

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \rightarrow & \mathbb{Z} \\
1 & & 0 \\
\rightarrow & & \rightarrow \\
\mathbb{Z} & &
\end{array}
$$
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2,C_2} is

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \Delta & \mathbb{Z}[C_2] & 1-\gamma & \mathbb{Z}[C_2]
\end{array}
\]

Passing to fixed points gives

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & 1 & \mathbb{Z} & 0 & \mathbb{Z}
\end{array}
\]

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K_{-2,C_2} = 0$.

1.34

The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2,C_2} is

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \Delta & \mathbb{Z}[C_2] & 1-\gamma & \mathbb{Z}[C_2]
\end{array}
\]

Passing to fixed points gives

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & 1 & \mathbb{Z} & 0 & \mathbb{Z}
\end{array}
\]

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K_{-2,C_2} = 0$.

1.34
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2,C_2} is

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
Z & \xrightarrow{\Delta} & Z[C_2] & \xrightarrow{1-\gamma} & Z[C_2]
\end{array}
$$

Passing to fixed points gives

$$
\begin{array}{ccc}
-2 & -3 & -4 \\
Z & \xrightarrow{1} & Z & \xrightarrow{0} & Z
\end{array}
$$

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2} K_{-2,C_2}^C = 0$.

This completes the proof of the Gap Theorem.
The proof of the Gap Theorem (continued)

Now we have to deal with $m = -2$.

C^{-2,C_2} is

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \xrightarrow{\Delta} & \mathbb{Z}[C_2] & \xrightarrow{1-\gamma} & \mathbb{Z}[C_2] \\
\end{array}
\]

Passing to fixed points gives

\[
\begin{array}{ccc}
-2 & -3 & -4 \\
\mathbb{Z} & \xrightarrow{1} & \mathbb{Z} & \xrightarrow{0} & \mathbb{Z} \\
\end{array}
\]

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K^{C_2}_{-2,C_2} = 0$.

This completes the proof of the Gap Theorem. $2 + 2 = 4$