Inside the proof of the Kervaire invariant theorem

or

How I got bitten by the equivariant bug

Math 549

May 1, 2015

Mike Hill
University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

The spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap

. .

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

ne spectrum 32

Equivariant stable homotopy theory

Two useful functors

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap Theorem

heorem

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder's theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cohordism

Real cobordism $\begin{aligned} &\text{Constructing our spectrum} \\ &\Omega \end{aligned}$

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder's theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder's theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years. I do not expect this job to be completed in my granddaughter's lifetime.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Constructing our spectru

The slice spectral sequence The case $G = C_0$

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

The Kervaire invariant problem was originally conceived as a question about smooth framed manifolds.

Browder's theorem of 1969 showed it was equivalent to a question about the stable homotopy groups of spheres.

Their determination has occupied algebraic topologists for the past 80 years. I do not expect this job to be completed in my granddaughter's lifetime.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Real cobordism $\begin{aligned} &\text{Constructing our spectrum} \\ &\Omega \end{aligned}$

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence

for MU_R

The stable homotopy groups of spheres have been most successfully studied using the Adams spectral sequence and its variants.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

he spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The stable homotopy groups of spheres have been most successfully studied using the Adams spectral sequence and its variants.

Chart by Dan Isaksen

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Real cobordism $\begin{aligned} & \text{Constructing our spectrum} \\ & \Omega \end{aligned}$

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Mark Mahowald 1931-2013

This leads us to the *Mahowald Uncertainty* Principle.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

Mark Mahowald 1931-2013

This leads us to the *Mahowald Uncertainty* Principle. Any spectral sequence converging to π_*S^0 with an algebraically computable E2-term has infinitely many differentials.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G The slice spectral sequence

for MU_P

Mark Mahowald 1931-2013

This leads us to the *Mahowald Uncertainty* Principle. Any spectral sequence converging to π_*S^0 with an algebraically computable E2-term has infinitely many differentials.

Finding differentials in these spectral sequences requires some additional geometric input.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G The slice spectral sequence

The proof of the Gap Theorem

for MU_P

Mark Mahowald 1931-2013

This leads us to the *Mahowald Uncertainty Principle*. Any spectral sequence converging to π_*S^0 with an algebraically computable E_2 -term has infinitely many differentials.

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

In the 60s, Toda used an extended power construction to show that if $x \in \pi_* S^0$ has order p, then $\alpha_1 x^p = 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude Browder's theorem

The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

In the 60s, Toda used an extended power construction to show that if $x \in \pi_* S^0$ has order p, then $\alpha_1 x^p = 0$.

In the 70s, Nishida extended these ideas to show that each positive dimensional element of π_*S^0 is nilpotent.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence for $MU_{\mathbf{p}}$

The proof of the G

Finding differentials in these spectral sequences requires some additional geometric input. It is often some kind of equivariant construction. Here are some examples.

In the 60s, Toda used an extended power construction to show that if $x \in \pi_* S^0$ has order p, then $\alpha_1 x^p = 0$.

In the 70s, Nishida extended these ideas to show that each positive dimensional element of π_*S^0 is nilpotent.

In the 80s, Devinatz, Hopkins and Smith leveraged these ideas still further to prove the Nilpotence Theorem in stable homotopy theory.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

Norman Steenrod 1910-1971

Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Norman Steenrod 1910-1971

Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra, upon which the Adams spectral sequence is based

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude Browder's theorem

The Adams spectral sequence The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G The slice spectral sequence

for MU_P

Norman Steenrod 1910-1971

Before any of this, Steenrod used an equivariant construction to produce his operations and with them the Steenrod algebra, upon which the Adams spectral sequence is based.

Drawing by Bob Bruner

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle

Differentials

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectru

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The UUD strategy

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Browder showed that the Kervaire invariant elements $\theta_i \in \pi_{2j+1-2}S^0$ exist iff the Adams spectral sequence element h_i^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case j=6 remains open.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \leq j \leq 5$. We showed they do not exist for $j \geq 7$. The case j=6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spectral for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$. The case j = 6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_i is nontrivial.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$. The case j = 6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_i exists, we will see its image in $\pi_*(\Omega)$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

ie spectrum 32

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$. The case j = 6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

- (i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

Theorem

The proof of the Gap

1.7

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$. The case j = 6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

- (i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_i exists, we will see its image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_k(\Omega) = 0$ for -4 < k < 0.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spe for MU_R

Browder showed that the Kervaire invariant elements $\theta_j \in \pi_{2^{j+1}-2}S^0$ exist iff the Adams spectral sequence element h_j^2 is a permanent cycle. This is known to be true for $1 \le j \le 5$. We showed they do not exist for $j \ge 7$. The case j = 6 remains open.

Our strategy is to construct a nonconnective ring spectrum Ω having a unit map $S^0 \to \Omega$ with the following properties.

- (i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_i exists, we will see its image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_k(\Omega) = 0$ for -4 < k < 0. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence

for MU_R

Here again are the properties of Ω :

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Principle

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors Representation spheres

Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_P

Here again are the properties of Ω :

- Detection Theorem. If θ_i exists, it has nontrivial image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism

Constructing our spectrum

The slice spectral sequence The case $G = C_0$

General G The slice spectral sequence for MU_P

The proof of the Gap

Theorem

Here again are the properties of Ω :

- (i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$.
- (ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

The spectrum 12

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Constructing our spectrum Ω

The slice spectral sequence The case $G = C_2$

The case $G = C_2$ General GThe slice spectral sequence for MU_0

Here again are the properties of Ω :

- (i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$.
- (ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

ne spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

onstructing our spect

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

Here again are the properties of Ω :

- (i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.
- (ii) Periodicity Theorem. $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
- (iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$.
- (ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega=0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Principle

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Differentials

The HHR strategy

The spectrum Ω

The openium 22

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega=0$. The Detection Theorem is proved with methods available 20 years ago.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Principle

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Differentials

The HHR strategy

ne min strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap Theorem

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega=0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy

The spectrum Ω

ne spectrum 12

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega=0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence. The Gap Theorem boils down to a surprisingly easy calculation once the machinery has been set up.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

ie HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence The case $G = C_0$

General G

The slice spectral sequence for MU_R

The aim of this talk is to prove the Gap Theorem, which says that $\pi_{-2}\Omega=0$. The Detection Theorem is proved with methods available 20 years ago. The Periodicity Theorem requires knowledge about differentials in the slice spectral sequence. The Gap Theorem boils down to a surprisingly easy calculation once the machinery has been set up.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The HHH strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap

Theorem

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap Theorem

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials The HHR strategy

The spectrum Ω

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

omotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

nomotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_b

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence

for MU_R

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞ -categories!

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spect for MU_R

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞ -categories!

The experts like to do this for compact Lie groups *G*,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about G-complete universes or ∞ -categories!

The experts like to do this for compact Lie groups G, but we only need cyclic groups of order 2, 4 and 8.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty
Principle

Differentials
The HHR strategy

The spectrum Ω

nomotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Our spectrum Ω is the fixed point set of a spectrum equipped with a C_8 action. We need some notions from equivariant stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including over 100 pages in the appendices to our paper. For the purposes of this talk, use your favorite definition of a spectrum with G acting on all spaces in sight, and require all structure maps to be equivariant. You do not need to worry about *G*-complete universes or ∞ -categories!

The experts like to do this for compact Lie groups G, but we only need cyclic groups of order 2, 4 and 8. We will assume from now on that G is finite.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Two useful functors

Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

The proof of the Gap Theorem

Let \mathcal{T}^G denote the category of pointed G-spaces;

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

Let $\mathcal{T}^{\mathcal{G}}$ denote the category of pointed $\emph{G}\text{-spaces};$ basepoints are always fixed by $\emph{G}.$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap Theorem

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H\subseteq G$ where is a forgetful functor $i_H^*:\mathcal{T}^G\to\mathcal{T}^H$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i_H^*: \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

 $\begin{array}{l} \text{Real cobordism} \\ \text{Constructing our spectrum} \\ \Omega \end{array}$

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spect for MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i_H^*: \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spec for MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i_H^*: \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spectr for MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H \subseteq G$ where is a forgetful functor $i_H^*: \mathcal{T}^G \to \mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^{G}(LY,X) = \mathcal{T}^{H}(Y,i_{H}^{*}X)$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spector MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H\subseteq G$ where is a forgetful functor $i_H^*:\mathcal{T}^G\to\mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY,X)=\mathcal{T}^H(Y,i_H^*X)\quad\text{and}\quad \mathcal{T}^H(i_H^*X,Y)=\mathcal{T}^G(X,RY).$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H\subseteq G$ where is a forgetful functor $i_H^*:\mathcal{T}^G\to\mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(\mathit{LY},X) = \mathcal{T}^H(\mathit{Y},\mathit{i}_H^*X) \quad \text{and} \quad \mathcal{T}^H(\mathit{i}_H^*X,\mathit{Y}) = \mathcal{T}^G(\mathit{X},\mathit{RY}).$$

It turns out that

$$LY = \bigvee_{|G/H|} Y = G_+ \underset{H}{\wedge} Y,$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω Equivariant stable

Two useful functors

Representation spheres

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R
The proof of the Gap

The proof of the Gap Theorem

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H\subseteq G$ where is a forgetful functor $i_H^*:\mathcal{T}^G\to\mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(LY,X) = \mathcal{T}^H(Y,i_H^*X)$$
 and $\mathcal{T}^H(i_H^*X,Y) = \mathcal{T}^G(X,RY).$

It turns out that

$$\mathit{LY} = \bigvee_{|\mathit{G}/\mathit{H}|} \mathit{Y} = \mathit{G}_{+} \underset{\mathit{H}}{\wedge} \mathit{Y},$$

where G permutes the H-invariant wedge summands, and G_+ denotes G with a disjoint basepoint.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory Two useful functors

The slice spectral sequence

The case $G = C_0$

General G
The slice spectral sequence for MU_R

Let \mathcal{T}^G denote the category of pointed G-spaces; basepoints are always fixed by G. For a subgroup $H\subseteq G$ where is a forgetful functor $i_H^*:\mathcal{T}^G\to\mathcal{T}^H$.

We need to consider its left and right adjoints $L, R : \mathcal{T}^H \to \mathcal{T}^G$, known as induction and coinduction. Adjointness means that for a pointed G-space X and a pointed H-space Y we have

$$\mathcal{T}^G(\mathit{LY},X) = \mathcal{T}^H(\mathit{Y},\mathit{i}_H^*X) \quad \text{and} \quad \mathcal{T}^H(\mathit{i}_H^*X,\mathit{Y}) = \mathcal{T}^G(\mathit{X},\mathit{RY}).$$

It turns out that

$$\mathit{LY} = \bigvee_{|\mathit{G}/\mathit{H}|} \mathit{Y} = \mathit{G}_{+} \underset{\mathit{H}}{\wedge} \mathit{Y},$$

where G permutes the H-invariant wedge summands, and G_+ denotes G with a disjoint basepoint. We can define a similar functor from H-spectra to G-spectra.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$

General GThe slice spectral sequence for $MU_{\mathbf{p}}$

The proof of the Gap

The proof of the Gap Theorem

L and R are the left and right adjoints of the forgetful functor i_H^* . This means

$$\mathcal{T}^G(LY,X) = \mathcal{T}^H(Y,i_H^*X)$$
 and $\mathcal{T}^H(i_H^*X,Y) = \mathcal{T}^G(X,RY)$.

It turns out that

$$LY = G_+ \underset{H}{\wedge} Y$$
 and $RY = \prod_{|G/H|} Y$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

L and R are the left and right adjoints of the forgetful functor i_H^* . This means

$$\mathcal{T}^G(LY,X)=\mathcal{T}^H(Y,i_H^*X)\quad\text{and}\quad \mathcal{T}^H(i_H^*X,Y)=\mathcal{T}^G(X,RY).$$

It turns out that

$$LY = G_+ \underset{H}{\wedge} Y$$
 and $RY = \prod_{|G/H|} Y$,

where *G* permutes the *H*-invariant factors *Y*.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

L and R are the left and right adjoints of the forgetful functor i_H^* . This means

$$\mathcal{T}^G(LY,X) = \mathcal{T}^H(Y,i_H^*X)$$
 and $\mathcal{T}^H(i_H^*X,Y) = \mathcal{T}^G(X,RY)$.

It turns out that

$$LY = G_+ \underset{H}{\wedge} Y$$
 and $RY = \prod_{|G/H|} Y$,

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spectr for MU_R

L and R are the left and right adjoints of the forgetful functor i_H^* . This means

$$\mathcal{T}^G(LY,X)=\mathcal{T}^H(Y,i_H^*X)\quad\text{and}\quad \mathcal{T}^H(i_H^*X,Y)=\mathcal{T}^G(X,RY).$$

It turns out that

$$LY = G_+ \underset{H}{\wedge} Y$$
 and $RY = \prod_{|G/H|} Y$,

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

$$N_H^G Y := \bigwedge_{|G/H|} Y,$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum
O

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

L and *R* are the left and right adjoints of the forgetful functor i_H^* . This means

$$\mathcal{T}^G(LY,X)=\mathcal{T}^H(Y,i_H^*X)\quad\text{and}\quad \mathcal{T}^H(i_H^*X,Y)=\mathcal{T}^G(X,RY).$$

It turns out that

$$LY = G_+ \underset{H}{\wedge} Y$$
 and $RY = \prod_{|G/H|} Y$,

where G permutes the H-invariant factors Y. It is useful to consider a similar functor using the smash product, namely

$$N_H^G Y := \bigwedge_{|G/H|} Y,$$

the norm functor on Y.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω
Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice spectral for MU_R

Let *V* be a finite dimensional orthogonal representation of *G*.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the G

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

 \mathcal{S}^V denotes both the one point compactification of V, with basepoint at ∞ , and the corresponding suspension spectrum.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum $\boldsymbol{\Omega}$

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Ω The slice spectral

sequence
The case $G = C_2$

General G

The slice spectral sequence

for MU_R

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

 S^V denotes both the one point compactification of V, with basepoint at ∞ , and the corresponding suspension spectrum. It follows that $S^{V+V'} = S^V \wedge S^{V'}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors

wo useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence
The case $G = C_2$

General G

The slice spectral sequence for MU_P

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

 S^V denotes both the one point compactification of V, with basepoint at ∞ , and the corresponding suspension spectrum. It follows that $S^{V+V'} = S^V \wedge S^{V'}$.

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Ω spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

The slice specti for MU_R

Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

 S^V denotes both the one point compactification of V, with basepoint at ∞ , and the corresponding suspension spectrum. It follows that $S^{V+V'} = S^V \wedge S^{V'}$

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cohordism Constructing our spectrum

The slice spectral

sequence The case $G = C_n$

General G The slice spectral sequence for MU_P

Representation spheres

Let V be a finite dimensional orthogonal representation of G. The key example for us is the regular representation ρ_G , the vector space $\mathbf{R}[G]$ where G acts by left multiplication.

 S^V denotes both the one point compactification of V, with basepoint at ∞ , and the corresponding suspension spectrum. It follows that $S^{V+V'}=S^V\wedge S^{V'}$.

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectru

Constructing our spectrum $\boldsymbol{\Omega}$

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence The case $G = C_2$ General G

The slice spectral sequence for MU_P

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cohordism Constructing our spectrum

The slice spectral

sequence The case $G = C_n$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

The proof of the Gap

Theorem

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi_W^G X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^{V}$ to the sphere spectrum S^{0} which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi_W^G X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps. Thus we have homotopy groups graded over RO(G), the orthogonal representation ring of G.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism Constructing our spectrum

Ω The slice spectral

sequence

The case $G = C_0$

General GThe slice spectral sequence for $MU_{\rm R}$

There is a way to define a spectrum S^{-V} with a map from $S^{-V} \wedge S^V$ to the sphere spectrum S^0 which is a homotopy equivalence, but not an isomorphism.

Hence we can define S^W for any virtual representation W. For a G-spectrum X we define

$$\pi_W^G X = [S^W, X]^G,$$

the group of homotopy classes of equivariant maps. Thus we have homotopy groups graded over RO(G), the orthogonal representation ring of G. We denote these collectively by $\pi_*^G X$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Representation sphe

Real cobordism $\begin{aligned} & \text{Constructing our spectrum} \\ & \Omega \end{aligned}$

Ω The slice spectral

sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_R

For a finite dimensional orthogonal representation W of $H \subseteq G$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

The slice spectral

sequence The case $G = C_0$

General G The slice spectral sequence for MU_P

The proof of the Gap

Theorem

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W , and get G-spectra

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence The case $G = C_n$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W , and get G-spectra

$$G_+ \underset{H}{\wedge} S^W$$

and

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W , and get G-spectra

$$G_+ \underset{H}{\wedge} S^W$$

and

$$N_{H}^{G}S^{W}=S^{\mathsf{Ind}_{H}^{G}W},$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G

The slice spectral sequence for MU_P

For a finite dimensional orthogonal representation W of $H \subseteq G$, we can apply our two functors to the H-spectrum S^W , and get G-spectra

$$G_+ \underset{H}{\wedge} S^W$$

and

$$N_{\mu}^{G}S^{W}=S^{\mathsf{Ind}_{H}^{G}W}.$$

where Ind_H^GW denotes the induced representation $\mathbf{R}[G] \otimes_{\mathbf{R}[H]} W$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G The slice spectral sequence

for MU_P

Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence

The case $G = C_0$ General G

The slice spectral sequence for MU_P

The proof of the Gap

Theorem

Let *MU* be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors
Representation spheres

Representation sphere Real cobordism

Constructing our spectrum

nstructing our spectrum

The slice spectral

sequence
The case $G = C_2$

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

Let MU be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category. Recall that

$$\pi_*MU = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

It has a C_2 -action defined in terms of complex conjugation.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G

The slice spectral sequence for MU_P

Let *MU* be the Thom spectrum for the unitary group, also known as the complex cobordism spectrum. It is a commutative ring object in our category. Recall that

$$\pi_*MU = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

It has a C_2 -action defined in terms of complex conjugation.

We denote the resulting C_2 -spectrum by $MU_{\mathbf{R}}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

Constructing our spectrum Ω

The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The C_2 -spectrum MU_R has been studied extensively.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum $\boldsymbol{\Omega}$

The slice spectral

sequence
The case $G = C_0$

The case G = 0General G

The slice spectral sequence for $MU_{\rm R}$

The C_2 -spectrum MU_R has been studied extensively.

Peter Landweber

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum $\boldsymbol{\Omega}$

The slice spectral

 $\begin{array}{l} \text{sequence} \\ \text{The case } \textit{G} = \textit{C}_{2} \end{array}$

General G
The slice spectral sequence

for MU_R

The C_2 -spectrum MU_R has been studied extensively.

Peter Landweber

Shoro Araki 1930–2005

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum O

Ω The slice spectral

sequence The case $G = C_2$

General G

The slice spectral sequence for MU_b

The proof of the G

The C_2 -spectrum $MU_{\rm R}$ has been studied extensively.

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki 1930-2005

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

The slice spectral

sequence The case $G = C_0$

General G The slice spectral sequence for MU_P

The C_2 -spectrum $MU_{\rm R}$ has been studied extensively.

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki 1930-2005

Nitu Kitchloo

Steve Wilson

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

sequence The case $G = C_0$

General G The slice spectral sequence for MU_P

The proof of the Gap

Theorem

For a G-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Ω The clice spectral

The slice spectral sequence

The case $G = C_2$

The slice spectral sequence for MU_R

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi^u_* MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

nstructing our spectrum

The slice spectral sequence

The case $G = C_2$

The slice spectral sequence for MU_R

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi_*^u MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Representation sphere Real cobordism

Constructing our spectrum

instructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi^u_*MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi^u_*MU_R$ is determined by $\gamma(r_i) = (-1)^i r_i$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Representation spheres

Real cobordism

Constructing our spectrum

Ω The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi^u_*MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u M U_{\mathbf{R}}$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i: S^{2i} \to MU$ underlies an equivariant map

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism Constructing our spectrum

Constructing our spectrum Ω

The slice spectral sequence

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence for $MU_{\mathbf{D}}$

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi^u_*MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi_*^u M U_{\mathbf{R}}$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i: S^{2i} \to MU$ underlies an equivariant map

$$S^{i\rho_2} \xrightarrow{\overline{r}_i} MU_{\mathbf{R}}$$

where ρ_2 denotes the regular representation of C_2 .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\mathbf{R}}$

For a *G*-spectrum X, we let $\pi_*^u X$ denote the homotopy of the underlying ordinary spectrum.

We have the C_2 -spectrum MU_R with

$$\pi^u_*MU_{\mathbf{R}} = \mathbf{Z}[r_1, r_2, \dots]$$
 where $r_i \in \pi_{2i}$.

Let $\gamma \in C_2$ be a generator. The action of C_2 on the ring $\pi^u_*MU_R$ is determined by $\gamma(r_i) = (-1)^i r_i$.

It turns out that $r_i: S^{2i} \to MU$ underlies an equivariant map

$$S^{i\rho_2} \xrightarrow{\overline{r}_i} MU_{\mathbf{R}}$$

where ρ_2 denotes the regular representation of C_2 . We say that \bar{r}_i refines r_i .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence

for MU_R

For $G = C_8$, we can form the norm $N_{C_2}^G MU_{\mathbf{R}}$, which we abbreviate by $MU^{((G))}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

2

The slice spectral

 $\begin{array}{l} \text{sequence} \\ \text{The case } \textit{G} = \textit{C}_{2} \end{array}$

General G

The slice spectral sequence for MU_B

The proof of the Gap

Theorem

For $G=C_8$, we can form the norm $N_{C_2}^GMU_{\mathbf{R}}$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cobordism

Constructing our spectrum $\boldsymbol{\Omega}$

The slice spectral

sequence
The case $G = C_2$

General G

The slice spectral sequence for MU_R

For $G = C_8$, we can form the norm $N_{C_2}^G M U_R$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2 -invariant factors.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

For $G = C_8$, we can form the norm $N_{C_8}^G MU_{\mathbf{R}}$, which we abbreviate by $MU^{(G)}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2 -invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi_{19\rho_0}^G MU^{((G))}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cohordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_P

For $G=C_8$, we can form the norm $N_{C_2}^GMU_{\mathbf{R}}$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2 -invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi_{19\rho_8}^G MU^{((G))}$. $D^{-1}MU^{((G))}$ is the telescope for the diagram

$$MU^{((G))} \xrightarrow{D} \Sigma^{-19\rho_8} MU^{((G))} \xrightarrow{D} \Sigma^{-38\rho_8} MU^{((G))} \xrightarrow{D} \dots$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

For $G=C_8$, we can form the norm $N_{C_2}^GMU_{\mathbf{R}}$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2 -invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi_{19\rho_8}^G MU^{((G))}$. $D^{-1}MU^{((G))}$ is the telescope for the diagram

$$MU^{((G))} \xrightarrow{D} \Sigma^{-19\rho_8} MU^{((G))} \xrightarrow{D} \Sigma^{-38\rho_8} MU^{((G))} \xrightarrow{D} \dots$$

Calculations show that there is an element $\Delta \in \pi_{256}^G D^{-1} MU^{((G))}$ such that the induced map

$$\Sigma^{256} D^{-1} MU^{((G))} \xrightarrow{\Delta} D^{-1} MU^{((G))}$$

is an equivariant homotopy equivalence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

nationing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

For $G=C_8$, we can form the norm $N_{C_2}^GMU_{\mathbf{R}}$, which we abbreviate by $MU^{((G))}$. It is underlain by the 4-fold smash power $MU^{\wedge 4}$ with the group G permuting the C_2 -invariant factors.

It can be made into a periodic spectrum by inverting a certain element $D \in \pi_{19\rho_8}^G MU^{((G))}$. $D^{-1}MU^{((G))}$ is the telescope for the diagram

$$MU^{((G))} \xrightarrow{D} \Sigma^{-19\rho_8} MU^{((G))} \xrightarrow{D} \Sigma^{-38\rho_8} MU^{((G))} \xrightarrow{D} \dots$$

Calculations show that there is an element $\Delta \in \pi_{256}^G D^{-1} MU^{((G))}$ such that the induced map

$$\Sigma^{256} D^{-1} MU^{((G))} \xrightarrow{\Delta} D^{-1} MU^{((G))}$$

is an equivariant homotopy equivalence. Our Ω is the *G*-fixed point spectrum of $D^{-1}MU^{(G)}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum

northern great operation

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

How do we make such calculations?

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

The Mahowald Uncertain Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

The proof of the Gap

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum

he slice spectral

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence for $MU_{\mathbf{D}}$

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

he slice spectral

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence for $MU_{\mathbf{D}}$

The proof of the Gap

coroni

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence for $MU_{\mathbf{D}}$

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX .

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism

Real cobordism

Constructing our spectrum

ne slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX .

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before:

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

he slice spectral

The case $G = C_2$ General GThe slice spectral sequence for $MU_{\mathbb{R}}$

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX .

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before: it is useless.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov filtration. In the latter we filter a spectrum X by its (n-1)-connected covers $\{P_nX\}$. The cofiber of the map $P_{n+1}X \to X$ is the spectrum obtained from X by killing all homotopy groups above dimension n. It is the nth Postnikov section of X, denoted by P^nX .

This collection of cofiber sequences leads to what might be called the Postnikov spectral sequence. There is a good reason you have may not heard of it before: it is useless. Its input and output are both π_*X .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials
The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum

he slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

Nevertheless, there is a useful formalism associated with the Postnikov tower.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem

The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that P_n S, the category of (n-1)-connected spectra,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

The proof of the Gap

Theorem

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of (n-1)-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

Ω

The case $G = C_2$ General GThe slice spectral sequence

The proof of the Gap

for MU_P

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of (n-1)-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{S^m \colon m \ge n\}$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials

The HHR strategy The spectrum Ω

ne spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

he slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of (n-1)-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{S^m : m \ge n\}$$

and closed under mapping cones, infinite wedges and retracts.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum

e slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that P_n S, the category of (n-1)-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{S^m \colon m \geq n\}$$

and closed under mapping cones, infinite wedges and retracts. Hence the cofiber of a map between (n-1)-connected spectra is again (n-1)-connected,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cohordism Constructing our spectrum

The slice spectral

The case $G = C_2$ General G The slice spectral sequence for MU_P

Nevertheless, there is a useful formalism associated with the Postnikov tower. Note that $P_n S$, the category of (n-1)-connected spectra, is the smallest subcategory of S (the category of all spectra), containing the set

$$T_n = \{S^m \colon m \geq n\}$$

and closed under mapping cones, infinite wedges and retracts. Hence the cofiber of a map between (n-1)-connected spectra is again (n-1)-connected, but the fiber of such a map need not be.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Constructing our spectrum Ω

The slice spectral

The case $G=C_2$ General GThe slice spectral sequence for MU_0

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

Here $G_+ \wedge S^m$ is the wedge of two *m*-spheres that are interchanged by the generator $\gamma \in C_2$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

Here $G_+ \wedge S^m$ is the wedge of two *m*-spheres that are interchanged by the generator $\gamma \in C_2$.

 $S^{m\rho}$ is the one point compactification of $m\rho$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

Here $G_+ \wedge S^m$ is the wedge of two *m*-spheres that are interchanged by the generator $\gamma \in C_2$.

 $S^{m\rho}$ is the one point compactification of $m\rho$, where ρ denotes the regular representation of C_2 .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

General G

The slice spectral sequence for MU_P

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

 $S^{m\rho}$ is the one point compactification of $m\rho$, where ρ denotes the regular representation of C_2 . It is underlain by S^{2m} .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

The spectrum 12
Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G
The slice spectral sequence

for MU_R

Again, P_n S, the category of (n-1)-connected spectra, is generated by the set

$$T_n = \{S^m \colon m \geq n\}$$
.

We need an equivariant generalization of the set T_n . For $G = C_2$, consider the following spectra for each integer m.

$$G_+ \wedge S^m$$
 and $S^{m\rho}$.

Here $G_+ \wedge S^m$ is the wedge of two m-spheres that are interchanged by the generator $\gamma \in C_2$.

 $S^{m\rho}$ is the one point compactification of $m\rho$, where ρ denotes the regular representation of C_2 . It is underlain by S^{2m} .

We will call these spectra slice spheres.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for $MU_{\rm R}$

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \ge n\}$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

For $G = C_2$ the generalization of

$$T_n = \{S^m : m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_R

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of G-spectra.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of *G*-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G ,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_R

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension $\geq n$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

The spectrum Ω Equivariant stable

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_P

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let \mathbb{S}^G denote the category of *G*-spectra. Define $P_n\mathbb{S}^G$ to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension > n.

This filtration of S^G leads to the slice spectral sequence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors Representation spheres Real cobordism

Constructing our spectrum Ω The slice spectral

sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_b

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of G-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension $\geq n$.

This filtration of \mathbb{S}^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_b

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of *G*-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension > n.

This filtration of \mathbb{S}^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $\mathbb{S}^G \to \mathbb{S}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_b

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let S^G denote the category of *G*-spectra. Define P_nS^G to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension > n.

This filtration of \mathcal{S}^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $\mathcal{S}^G \to \mathcal{S}$. For a G-spectrum X it enables us to define G-analogs of connective covers.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_D

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \geq n\} \cup \{S^{m\rho} \colon 2m \geq n\}.$$

Let \mathbb{S}^G denote the category of *G*-spectra. Define $P_n\mathbb{S}^G$ to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension > n.

This filtration of \mathbb{S}^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $\mathbb{S}^G \to \mathbb{S}$. For a G-spectrum X it enables us to define G-analogs of connective covers. The nth slice $P_n^n X$ is the cofiber of the map $P_{n+1} X \to P_n X$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G
The slice spectral sequence for MU_b

For $G = C_2$ the generalization of

$$T_n = \{S^m \colon m \geq n\}$$

is

$$T_n^G = \{G_+ \wedge S^m \colon m \ge n\} \cup \{S^{m\rho} \colon 2m \ge n\}.$$

Let \mathbb{S}^G denote the category of *G*-spectra. Define $P_n\mathbb{S}^G$ to be the subcategory generated by the elements of T_n^G , i.e., by slice spheres of dimension > n.

This filtration of S^G leads to the slice spectral sequence. Unlike the classical Postnikov spectral sequence, it is extremely useful. It maps to the classical one under the forgetful functor $S^G \to S$. For a G-spectrum X it enables us to define G-analogs of connective covers. The nth slice $P_n^n X$ is the cofiber of the map $P_{n+1} X \to P_n X$, just as in the classical case.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

The slice spectral sequence for MU_b

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

General G

The slice spectral sequence for MU_P

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an *n*-dimensional slice sphere need not be (n-1)-connected.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres

Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

General G

The slice spectral sequence for MU_P

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty
Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism $\begin{aligned} &\text{Constructing our spectrum} \\ &\Omega \end{aligned}$

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_b

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an *n*-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

The slice spectral sequence

for MU_P

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_P

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an *n*-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \stackrel{\wedge}{\wedge} S^{m\rho_H}$$

to be a slice sphere of dimension m|H|,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

The slice spectral sequence

for MU_P

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \stackrel{\wedge}{\wedge} S^{m\rho_H}$$

to be a slice sphere of dimension m|H|, where ρ_H is the regular representation.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

auivariant stable

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Real cobordism

Constructing our spectrum
Ω

The slice spectral sequence

The case $G = C_2$

General

The slice spectral sequence for MU_B

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \stackrel{\wedge}{\underset{\scriptscriptstyle H}{\wedge}} S^{m\rho_H}$$

to be a slice sphere of dimension m|H|, where ρ_H is the regular representation. Then we define

$$T_n^G = \left\{ G_+ \underset{H}{\wedge} S^{m\rho_H} \colon m|H| \ge n, \ H \subseteq G \right\},$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General (

The slice spectral sequence for MU_B

The slice spectral sequence is more interesting than the Postnikov spectral sequence for the following reason. The fixed point spectrum of an n-dimensional slice sphere need not be (n-1)-connected. Its homotopy groups need not be concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite group G. For each subgroup $H \subseteq G$ and each integer m, we define

$$G_+ \stackrel{\wedge}{\wedge} S^{m\rho_H}$$

to be a slice sphere of dimension m|H|, where ρ_H is the regular representation. Then we define

$$T_n^G = \left\{ G_+ \underset{H}{\wedge} S^{m\rho_H} \colon m|H| \ge n, \ H \subseteq G \right\},$$

the set of slice spheres of dimension $\geq n$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

Two useful functors Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General (

The slice spectral sequence for MU_B

The proof of the Gap

Theorem

We use the resulting filtration of \mathbb{S}^G to define

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral

sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

Conord C

General G

The slice spectral sequence for MU_P

We use the resulting filtration of S^G to define "connective" covers" P_nX .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors Representation spheres

Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_0$

General G

The slice spectral sequence for MU_P

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory

Two useful functors
Representation spheres

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_b

The proof of the Gap

We use the resulting filtration of SG to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude sequence

Browder's theorem The Adams spectral

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

General G

The slice spectral sequence for MU_P

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a *G*-spectrum *X* is not easy in general.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_b

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a *G*-spectrum *X* is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

ne spectrum 12

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_b

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism

Real cobordism $\begin{aligned} &\text{Constructing our spectrum} \\ &\Omega \end{aligned}$

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_b

We use the resulting filtration of SG to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a *G*-spectrum *X* is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of MU_R mentioned above. In each case the nth slice is contractible for odd n.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$

The slice spectral sequence for MU_P

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of $MU_{\mathbf{R}}$ mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P_n^n X = W_n \wedge H\underline{Z},$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_P

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of $MU_{\mathbf{R}}$ mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P_n^n X = W_n \wedge H \underline{Z},$$

where W_n is a wedge of *n*-dimensional slice spheres

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_B

We use the resulting filtration of S^G to define "connective covers" P_nX , "Postnikov sections" P^nX and slices P_n^nX as

before.

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of $MU_{\mathbf{R}}$ mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P_n^n X = W_n \wedge H \underline{Z},$$

where W_n is a wedge of n-dimensional slice spheres and $H\mathbf{Z}$ is the integer Eilenberg-Mac Lane spectrum with trivial G-action.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

The slice spectral sequence

for MU_R

Determining the slices of a G-spectrum X is not easy in general. The main technical computation of HHR is the identification of these slices for the spectra of interest in the paper, the relatives of $MU_{\mathbf{R}}$ mentioned above. In each case the nth slice is contractible for odd n, and for even n it has the form

$$P_n^n X = W_n \wedge H \underline{Z},$$

where W_n is a wedge of n-dimensional slice spheres and $H\underline{Z}$ is the integer Eilenberg-Mac Lane spectrum with trivial G-action. W_n never has a wedge summand of the form $G_+ \wedge S^n$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$

General G

The slice spectral sequence for MU_B

We have a complete description of the slice spectral sequence for $MU_{\mathbf{R}}$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap

Theorem

We have a complete description of the slice spectral sequence for $MU_{\mathbf{R}}$, including all of its infinitely many differentials.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for $MU_{\rm R}$, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

iπerentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

 Ω The slice spectral

sequence The case $G = C_2$

General G

The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for $MU_{\rm R}$, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors Representation spheres

Representation spheres
Real cobordism
Constructing our spectrum Ω

The slice spectral sequence The case $G = C_2$

General G

The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for $MU_{\rm R}$, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between *MU* and *MO*, between complex and unoriented cobordism.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism

Real cobordism

Constructing our spectrum

The slice spectral sequence
The case $G = C_0$

General G

The slice spectral sequence for MU_R

We have a complete description of the slice spectral sequence for $MU_{\rm R}$, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between *MU* and *MO*, between complex and unoriented cobordism.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

Constructing our spectra Ω The slice spectral

sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_o

We have a complete description of the slice spectral sequence for $MU_{\rm R}$, including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity Theorem.

As in the past, we need some extra geometry to understand them. In this case it is all encoded in the well understood relation between *MU* and *MO*, between complex and unoriented cobordism.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors Representation spheres Real cohordism

The slice spectral sequence The case $G = C_2$

General G

The slice spectral sequence for MU_R

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_P

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum
O

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence

for MU_R

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H}=G_{+} \stackrel{\wedge}{\wedge} S^{m\rho_{H}} \wedge H\underline{\mathbf{Z}}$$

for integers m and nontrivial subgroups $H \subseteq G$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G=C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H\underline{\mathbf{Z}}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K_{m,H}^G$, the G-fixed point spectrum of $K_{m,H}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence

for MU_P

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G = C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H} = G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H\underline{\mathbf{Z}}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K_{m,H}^G$, the G-fixed point spectrum of $K_{m,H}$.

We will show that $\pi_{-2}K_{m,H}^G$ vanishes in every case.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory
Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for $MU_{\rm R}$

The Gap Theorem says that $\pi_{-2}\Omega = 0$.

The spectrum Ω is the fixed point spectrum for a G-spectrum $D^{-1}MU^{((G))}$, where $G=C_8$.

The homotopy of $D^{-1}MU^{((G))}$ and its fixed point spectra can be studied with the slice spectral sequence. Its input is the homotopy groups of wedges of spectra of the form

$$K_{m,H}=G_{+} \underset{H}{\wedge} S^{m\rho_{H}} \wedge H\underline{Z}$$

for integers m and nontrivial subgroups $H \subseteq G$. This means that its G-fixed point spectrum Ω is built out of copies of $K_{m,H}^G$, the G-fixed point spectrum of $K_{m,H}$.

We will show that $\pi_{-2}K_{m,H}^G$ vanishes in every case.

 $\pi_{-2}\Omega$ never had a chance!

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

The proof of the Gap Theorem (continued)

How do we compute $\pi_* K_{m,H}^G$?

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Two useful functors Representation spheres

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

uivariant etable

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

How do we compute $\pi_* K_{mH}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi_*^u \mathcal{K}_{m,H} = \pi_*^u \mathcal{G}_+ \underset{H}{\wedge} \mathcal{S}^{m\rho_H} \wedge H\underline{\mathbf{Z}}$$

$$= H_*^u \mathcal{G}_+ \underset{H}{\wedge} \mathcal{S}^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|\mathcal{G}/H|} H_* \mathcal{S}^{m|H|}.$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G The slice spectral sequence

for MU_P

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi_*^u \mathcal{K}_{m,H} = \pi_*^u \mathcal{G}_+ \underset{H}{\wedge} \mathcal{S}^{m\rho_H} \wedge H\underline{\mathbf{Z}}$$

$$= H_*^u \mathcal{G}_+ \underset{H}{\wedge} \mathcal{S}^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|\mathcal{G}/H|} H_* \mathcal{S}^{m|H|}.$$

 $G_+ \underset{\iota}{\wedge} S^{m\rho_H}$ is a finite G-CW complex.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi^u_* K_{m,H} = \pi^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H \underline{Z}$$

$$= H^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^{m|H|}.$$

 $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_*^{m,H}$ of $\mathbf{Z}[G]$ -modules.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi^u_* K_{m,H} = \pi^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H \underline{Z}$$

$$= H^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^{m|H|}.$$

 $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_*^{m,H}$ of $\mathbf{Z}[G]$ -modules. Describing it is a geometric exercise.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral

Sequence

The case $G = C_2$ General GThe slice spectral sequence

The proof of the Gap

for MU_P

How do we compute $\pi_* K_{mH}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi^u_* K_{m,H} = \pi^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H \underline{Z}$$

$$= H^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^{m|H|}.$$

 $G_+ \stackrel{\wedge}{\underset{\iota}{\cap}} S^{m\rho_H}$ is a finite *G*-CW complex. This means that it has a reduced cellular chain complex $C_*^{m,H}$ of **Z**[*G*]-modules. Describing it is a geometric exercise.

For $G_+ \underset{\iota}{\wedge} S^{-m\rho_H}$, we can use the **Z**-linear dual of $C^{m,H}$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Principle

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory Two useful functors Representation spheres

Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G The slice spectral sequence

for MU_P

How do we compute $\pi_* K_{m,H}^G$? We begin with the underlying homotopy groups of $K_{m,H}$ for $m \ge 0$. We have

$$\pi^u_* K_{m,H} = \pi^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H \underline{Z}$$

$$= H^u_* G_+ \underset{H}{\wedge} S^{m\rho_H} \qquad \text{(underlying homology)}$$

$$= \bigoplus_{|G/H|} H_* S^{m|H|}.$$

 $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is a finite G-CW complex. This means that it has a reduced cellular chain complex $C_*^{m,H}$ of $\mathbf{Z}[G]$ -modules. Describing it is a geometric exercise.

For $G_+ \underset{H}{\wedge} S^{-m\rho_H}$, we can use the **Z**-linear dual of $C^{m,H}$, which we denote by $C^{-m,H}$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

It follows that

$$\pi_* K_{m,H}^G = H_* \left((C^{m,H})^G \right)$$
 for all m and H .

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence The case $G = C_0$

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

It follows that

$$\pi_* K_{m,H}^G = H_* \left((C^{m,H})^G \right)$$
 for all m and H .

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. First we need

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

omerentials

The HHR strategy The spectrum Ω

ie spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Ω The slice spectral

Sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

It follows that

$$\pi_*K^G_{m,H} = H_*\left((C^{m,H})^G\right)$$
 for all m and H .

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. First we need

WARNING Fixed points do not commute with smash products,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

It follows that

$$\pi_* K_{m,H}^G = H_* \left((C^{m,H})^G \right)$$
 for all m and H .

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. First we need

WARNING Fixed points do not commute with smash products, so $(G_+ \bigwedge_H S^{m\rho_H} \wedge H\mathbf{Z})^G$ is not the same as $(G_+ \bigwedge_H S^{m\rho_H})^G \wedge H\mathbf{Z}$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

It follows that

$$\pi_*K_{m,H}^G = H_*\left((C^{m,H})^G\right)$$
 for all m and H .

We now analyze $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. First we need

WARNING Fixed points do not commute with smash products, so $(G_+ \underset{H}{\wedge} S^{m\rho_H} \wedge H\underline{\mathbf{Z}})^G$ is not the same as $(G_+ \underset{H}{\wedge} S^{m\rho_H})^G \wedge H\underline{\mathbf{Z}}$, and $H_* ((C^{m,H})^G)$ is not the homology of $(G_+ \underset{H}{\wedge} S^{m\rho_H})^G = \left\{ \begin{array}{ll} S^m & \text{for } H = G \\ * & \text{otherwise.} \end{array} \right.$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors
Representation spheres

Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. The bottom G-cell of $G_+ \wedge S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m_{
ho_H}})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors

Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G

The slice spectral sequence for MU_P

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. The bottom G-cell of $G_+ \underset{\hookrightarrow}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m\rho_H})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory

Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_B

We are analyzing $C^{m,H}$ and $(C^{m,H})^G$ for $m \ge 0$. The bottom G-cell of $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m\rho_H})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy
The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism
Construction our spectrum

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

The bottom G-cell of $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m_{
ho_H}})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

he spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

Ω
The slice spectral

sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_R

The bottom G-cell of $G_+ \bigwedge_{\mathcal{A}} \mathcal{S}^{m\rho_{\mathcal{H}}}$ is

$$(G_+ \underset{H}{\wedge} S^{m_{
ho_H}})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$. $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \ge 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \le i \le m|H|$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence The Mahowald Uncertainty Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cohordism Constructing our spectrum

The slice spectral sequence

The case $G = C_n$ General G The slice spectral sequence for MU_P

The bottom G-cell of $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m\rho_H})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \ge 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \le i \le m|H|$, and $\pi_i K_{-m,H}^G$ is trivial unless $-m \ge i \ge -m|H|$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty Principle

Differentials

The HHR strategy $\text{The spectrum } \Omega$

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

 Ω The slice spectral

Sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

The bottom *G*-cell of $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m\rho_H})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \ge 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \le i \le m|H|$, and $\pi_i K_{-m,H}^G$ is trivial unless $-m \ge i \ge -m|H|$.

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G=0$ in all cases.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable

Equivariant stable homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_b

The bottom G-cell of $G_+ \underset{H}{\wedge} S^{m\rho_H}$ is

$$(G_+ \underset{H}{\wedge} S^{m\rho_H})^H = G_+ \underset{H}{\wedge} S^m$$

in dimension m, while the top cell is in dimension m|H|. Similar statements hold for $C^{m,H}$, $C^{-m,H}$ and their fixed point subcomplexes.

It follows that for $m \ge 0$, $\pi_i K_{m,H}^G$ is trivial unless $m \le i \le m|H|$, and $\pi_i K_{-m,H}^G$ is trivial unless $-m \ge i \ge -m|H|$.

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G = 0$ in all cases. From the above we see that the only values of m we need to consider are m = -1 and m = -2.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty
Principle

Differentials
The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory Two useful functors Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G=0$ in all cases, and the only values of m we need to consider are m=-1 and m=-2.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

ne spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_P

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G = 0$ in all cases, and the only values of m we need to consider are m = -1 and m = -2.

For simplicity I will do this for $H = G = C_2$,

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G=0$ in all cases, and the only values of m we need to consider are m=-1 and m=-2.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

e spectrum 12

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G=0$ in all cases, and the only values of m we need to consider are m=-1 and m=-2.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For m = 1, C^{1,C_2} is the reduced C_2 -cellular chain complex for S^{ρ_2} . It is

1 2
$$\mathbf{Z} \leftarrow \nabla \mathbf{Z}[C_2]$$

where ∇ is the augmentation map sending the generator γ to 1.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy The spectrum Ω

ie spectrum 12

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_b

For the Gap Theorem we want to show that $\pi_{-2}K_{m,H}^G=0$ in all cases, and the only values of m we need to consider are m=-1 and m=-2.

For simplicity I will do this for $H = G = C_2$, this being similar in essence to the cases where $G = C_8$.

For m=1, C^{1,C_2} is the reduced C_2 -cellular chain complex for S^{ρ_2} . It is

1
$$\mathbf{Z} \leftarrow \nabla \mathbf{Z}[C_2]$$

where ∇ is the augmentation map sending the generator γ to 1.

Its **Z**-linear dual C^{-1,C_2} is

$$-1$$
 -2 $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2]$

where Δ is the diagonal embedding sending 1 to 1 + γ .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Differentials

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty
Principle

The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors
Representation spheres
Real cobordism

Constructing our spectrum Ω

The slice spectral sequence The case $G = C_2$

The case $G = C_2$ General GThe slice spectral sequence

for MU_R

$$C^{-1,C_2}$$
 is $-1 \qquad -2$ $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2]$

where Δ is the diagonal embedding sending 1 to 1 + γ .

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem The Adams spectral

sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy

The spectrum Ω

Equivariant stable

homotopy theory Two useful functors

Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence

for MU_P

$$C^{-1,C_2}$$
 is $-1 \qquad -2$ ${f Z} \xrightarrow{\Delta} {f Z} [C_2]$

where Δ is the diagonal embedding sending 1 to 1 + γ .

Passing to fixed points gives

$$-1$$
 -2 $Z \xrightarrow{1} Z$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum

Constructing our sp Ω

The slice spectral sequence
The case $G = C_n$

General G

The slice spectral sequence for MU_D

$$C^{-1,C_2}$$
 is
$$-1 \qquad \qquad -2$$
 $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2]$

where Δ is the diagonal embedding sending 1 to 1 + γ .

Passing to fixed points gives

$$-1$$
 -2 $\mathbf{Z} \xrightarrow{1} \mathbf{Z}$

This has trivial homology, so $\pi_{-2}K_{-1,C_2}^{C_2}=0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty
Principle

Differentials

The HHR strategy

The spectrum Ω Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum

The slice spectral

sequence
The case $G = C_2$ General G

The slice spectral sequence for MU_B

Now we have to deal with m = -2.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle
Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Now we have to deal with m = -2.

$$C^{-2,C_2}$$
 is
$$-2 \qquad -3 \qquad -4$$

$$\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2] \xrightarrow{1-\gamma} \mathbf{Z}[C_2]$$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence

The Mahowald Uncertainty Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors
Representation spheres
Real cobordism
Constructing our spectrum

The slice spectral sequence

The case $G = C_2$ General G

The slice spectral sequence for MU_R

Now we have to deal with m = -2.

$$C^{-2,C_2}$$
 is
$$-2 \qquad -3 \qquad -4$$

Passing to fixed points gives

$$-2$$
 -3 $Z \xrightarrow{1} Z \xrightarrow{0} Z \xrightarrow{0} Z$

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle
Differentials

Differentials

The HHR strategy The spectrum Ω

Equivariant stable

homotopy theory
Two useful functors

Representation spheres Real cobordism Constructing our spectrum

Constructing our spec 2

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

Now we have to deal with m = -2.

$$C^{-2,C_2}$$
 is

$$-2$$
 -3 -4 $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2] \xrightarrow{1-\gamma} \mathbf{Z}[C_2]$

Passing to fixed points gives

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K_{-2,C_2}^{C_2}=0$.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G=\mathcal{C}_2$ General GThe slice spectral sequence for $MU_{\mathbf{D}}$

Now we have to deal with m = -2.

$$C^{-2,C_2}$$
 is

$$-2$$
 -3 -4 $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2] \xrightarrow{1-\gamma} \mathbf{Z}[C_2]$

Passing to fixed points gives

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K_{-2,C_2}^{C_2}=0$.

This completes the proof of the Gap Theorem.

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral
sequence
The Mahowald Uncertainty

Principle Differentials

The HHR strategy The spectrum Ω

Equivariant stable homotopy theory

Two useful functors Representation spheres Real cobordism

Constructing our spectrum Ω

The slice spectral sequence

The case $G = C_2$ General GThe slice spectral sequence for MU_0

The proof of the Gap

1.34

Now we have to deal with m = -2.

$$C^{-2,C_2}$$
 is

$$-2$$
 -3 -4 $\mathbf{Z} \xrightarrow{\Delta} \mathbf{Z}[C_2] \xrightarrow{1-\gamma} \mathbf{Z}[C_2]$

Passing to fixed points gives

$$-2$$
 -3 -4 $\mathbf{Z} \xrightarrow{1} \mathbf{Z} \xrightarrow{0} \mathbf{Z}$

This has nontrivial homology, but only in dimension -4, so again $\pi_{-2}K_{-2,C_2}^{C_2}=0$.

This completes the proof of the Gap Theorem. 2 + 2 = 4

How I got bitten

Mike Hill Mike Hopkins Doug Ravenel

Prelude

Browder's theorem
The Adams spectral sequence
The Mahowald Uncertainty

Principle
Differentials
The HHR strategy

The spectrum Ω

Equivariant stable homotopy theory

Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum

The slice spectral sequence

The case $G=C_2$ General GThe slice spectral sequence for MU_0