
Definition: A spectrum E is a sequence of spaces E_n with maps 

or equivalently maps

In a suspension spectrum, each f_n is an equivalence.  In an Ω-spectrum, each g_n is an 

equivalence.

For a pointed space X there is a suspension spectrum 

where the nth space is the nth suspension of X. 

Any spectrum can be converted to an Ω-spectrum by replacing E_n with the space

The sphere spectrum S^0 is the suspension spectrum for X=S^0.

The original example of an Ω-spectrum is the Eilenberg-Mac Lane spectrum for an 

abelian group G in which E_n=K(G, n).

The reduced suspension of a pointed space X is the double cone on X 

with the line through the base point x_0 collapsed to a point, which 

is the new base point.

A map f:∑X --> Y is equivalent to a map  g:X --> ΩY.  For 

each x in X, f determines a closed path in Y.  Hence we 

get a map g as claimed since ΩY is the space of closed 

paths in Y.
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In a spectrum we have maps g_: E_n --> ΩE_{n+1}

A map between spectra E--->F  could be a sequence of maps  E_n --> F_n compatible 

with the structure maps.  This is too restrictive!

EXAMPLE.  Consider the suspension spectra S^1 and S^0.  In the former, the nth space 

is S^{n+1}, and the latter it is S^n.  We have the Hopf map  of spaces \eta:S^3 --> S^2.  

However \eta is NOT the suspension of any map S^2 --> S^1.

Classifying spaces

Let G be a topological group.  Let E_n G bed the (n+1)-fold join of G with itself.

Given spaces X and Y, their join X*Y is the quotient of the product X x I x Y, where 

I=[0,1], where 

Exercises:  S^m * S^n = S^{n+m+1}.  For G=C_2, E_n G = S^n with 

antipodal action.  In general E_n G is (n-1)-connected.

Definition G acts freely on E_n G by left multiplication n each coordinate in G.  Let B_n G 

be its orbit space. Eg B_1 G unreduced suspension of G.  Let the classifying space BG be 
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be its orbit space. Eg B_1 G unreduced suspension of G.  Let the classifying space BG be 

the limit of the B_n G and EG the limit of the E_n G.  EG is contractible and has a free G 

action.  This construction is functorial in G, i.e. a homomorphism G --> H induced a map 

BG --> BH.

When G is discrete and acts freely on a space X, we get an equivariant map X \to EF and 

a map from X/G to BG.  The homotopy class of the latter determines the group action.

Consider the cases G=O(n) or U(n), the nth orthogonal or unitary group.

We have spaces BO(n) and BU(n).  They come equipped with n-dimensional real or 

complex vector bundles  \gamma_n and \gamma^C_n.  Each has an associated unit disk 

bundle D and unit sphere bundle S.  Consider the space D/S.  This is called a Thom space. 

Call them MO(n) and MU(n).  We can use them to construct two spectra MO and MU.

In the orthogonal case, MO_n = MO(n).  We need a map ∑MO(n) --> MO(n+1).  Cosnder 

the direct sum gamma'_n of the vector bundle \gamma_n with a trivial line bundle. It is 

an (n+1)-plane bundle induced by the map BO(n)-->BO(n+1) incued by the inclusion of 

O(n) into O(n+1).  The Thom space for \gamma'_n is ∑MO(n), so we have our map from 

it to MO(n+1).

In the unitary case, a similar construction gives a map ∑^2 MU(n) --> MU(n+1).  We 

define the spectrum MU by MU_{2n}=MU(n) and MU_{2n+1}=  ∑ MU(n).

The spectra MO and MU are very important.

Remark:  In each example spectrum E  so far, the space E_n is (n-1)-connected.  This 

definition does NOT require this.  Such a spectrum is said to be connective.

Example of a nonconnective spectrum:

Bott Periodicity Theorem: Ω^2 BU is equivalent to Z x BU.  It implies that 

π_k BU =π_{k+2} BU.  The orthogonal analog is   Ω^8 BO is equivalent to Z x BO, so 

π_k BO =π_{k+8} BO.

We can use this to construct spectra K and KO.  K_{2n} =Z x BU, K_{2n+1} = U.  For any G,

ΩBG = G, so ΩK_{2n+2}=K_{2n+1}, and Ω^2 K_{2n+2}=K_{2n}.  This leads to an Ω-

spectrum K.  It is NOT connective.

To continued Monday 3:25 in 1101.  Read Intro and Chapter 1 of Lewis-May-Steinberger.
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