**Definition**: A *spectrum* E is a sequence of spaces E\_n with maps

SEMBATZEMTI.

or equivalently maps

En SZEnti. for n=>0 The spaces and pointed En SZEnti Emeans reduced suspension

In a suspension spectrum, each f n is an equivalence. In an  $\Omega$ -spectrum, each g n is an equivalence.

For a pointed space X there is a suspension spectrum where the nth space is the *n*th suspension of X.

Any spectrum can be converted to an  $\Omega$ -spectrum by replacing E\_n with the space



The sphere spectrum  $S^0$  is the suspension spectrum for  $X=S^0$ .

The original example of an  $\Omega$ -spectrum is the Eilenberg-Mac Lane spectrum for an abelian group G in which E n=K(G, n).

The reduced suspension of a pointed space X is the double cone on X with the line through the base point x = 0 collapsed to a point, which is the new base point.

A map f: $\Sigma X \rightarrow Y$  is equivalent to a map g:X  $\rightarrow \Omega Y$ . For each x in X, f determines a closed path in Y. Hence we get a map g as claimed since  $\Omega Y$  is the space of closed paths in Y.

New Section 1 Page 1



In a spectrum we have maps g\_: E\_n --> ΩE\_{n+1}

A map between spectra E--->F could be a sequence of maps E\_n --> F\_n compatible with the structure maps. This is too restrictive!

EXAMPLE. Consider the suspension spectra S^1 and S^0. In the former, the nth space is S^{n+1}, and the latter it is S^n. We have the Hopf map of spaces  $eta:S^3 --> S^2$ . However eta is NOT the suspension of any map S^2 --> S^1.

## **Classifying spaces**

Let G be a topological group. Let E\_n G bed the (n+1)-fold join of G with itself. Given spaces X and Y, their join X\*Y is the quotient of the product X x I x Y, where I=[0,1], where

 $(x', 0, y) \sim (x', 0, y)$  for any  $x', x' \in X, y \in Y$ .  $(x, 1, y') \sim (x, 1, y'')$  "  $x \in X, y', y'' \in Y$ .

Exercises:  $S^m * S^n = S^{n+m+1}$ . For  $G=C_2$ ,  $E_n G = S^n$  with antipodal action. In general  $E_n G$  is (n-1)-connected.

Definition G acts freely on E\_n G by left multiplication n each coordinate in G. Let B\_n G

be its orbit space. Eg B\_1 G unreduced suspension of G. Let the *classifying space BG* be the limit of the B\_n G and EG the limit of the E\_n G. EG is contractible and has a free G action. This construction is functorial in G, i.e. a homomorphism G --> H induced a map BG --> BH.

When G is discrete and acts freely on a space X, we get an equivariant map X \to EF and a map from X/G to BG. The homotopy class of the latter determines the group action.

Consider the cases G=O(n) or U(n), the nth orthogonal or unitary group. We have spaces BO(n) and BU(n). They come equipped with n-dimensional real or complex vector bundles \gamma\_n and \gamma^C\_n. Each has an associated unit disk bundle D and unit sphere bundle S. Consider the space D/S. This is called a Thom space. Call them MO(n) and MU(n). We can use them to construct two spectra MO and MU.

In the orthogonal case,  $MO_n = MO(n)$ . We need a map  $\sum MO(n) \longrightarrow MO(n+1)$ . Cosnder the direct sum gamma'\_n of the vector bundle \gamma\_n with a trivial line bundle. It is an (n+1)-plane bundle induced by the map  $BO(n) \longrightarrow BO(n+1)$  incued by the inclusion of O(n) into O(n+1). The Thom space for \gamma'\_n is  $\sum MO(n)$ , so we have our map from it to MO(n+1).

In the unitary case, a similar construction gives a map  $\sum^2 MU(n) \rightarrow MU(n+1)$ . We define the spectrum MU by MU\_{2n}=MU(n) and MU\_{2n+1}=  $\sum MU(n)$ .

The spectra MO and MU are very important.

Remark: In each example spectrum E so far, the space E\_n is (n-1)-connected. This definition does NOT require this. Such a spectrum is said to be *connective*.

Example of a nonconnective spectrum:

Bott Periodicity Theorem:  $\Omega^2$  BU is equivalent to Z x BU. It implies that  $\pi_k$  BU = $\pi_{k+2}$  BU. The orthogonal analog is  $\Omega^8$  BO is equivalent to Z x BO, so  $\pi_k$  BO = $\pi_{k+8}$  BO.

We can use this to construct spectra K and KO. K\_{2n} =Z x BU, K\_{2n+1} = U. For any G,  $\Omega$ BG = G, so  $\Omega$ K\_{2n+2}=K\_{2n+1}, and  $\Omega^{2}$  K\_{2n+2}=K\_{2n}. This leads to an  $\Omega$ spectrum K. It is NOT connective.

To continued Monday 3:25 in 1101. Read Intro and Chapter 1 of Lewis-May-Steinberger.