How to construct an Eilenberg-Mac Lane spectrum HM for a Mackey functor M.

An $RO(G)$ graded cohomology theory is a set functor $F_\ast : G$-spectra \(\rightarrow RO(G)$-graded algebras of G-spectra satisfying the Eilenberg-Steenrod axioms.

An (Brown) G-functor k as above is representable by a G-spectrum $k(x) = [X,k]$ if k satisfies weak axiom.
and MUS.

Any E_0 as above is represented by a G-spectrum

Any G-graded theory F on G-spectrum

is represented by a G-spectrum F' and it extends to an ROC(G) - graded theory by $F'(X) = F_0 (Σ^n X)$

Thus given a Mackey functor M there

in a spectrum HM with

$\text{HM} = \left\{ \begin{array}{ll}
M & i = 0 \\
0 & i \neq 0
\end{array} \right.$ for $i \in \mathbb{Z}$
If we produce a ℤ-graded theory:

\(X \) is a \(G \)-CW spectrum

\(X^n = n \)-skeleton

Define a chain \(CX \) of Mackey functors by

\[
C_\eta^n(X) = \prod_m (X^n / X^{n-1})
\]

with boundary operator \(d \).

Note \(X^n / X^{n-1} \) = wedge of \(n \)-sphere \(G \)-skeleton

\(S^n_\eta = G/H^n \wedge S^n \)

We dualize this chain \(CX \)

\[
C_G^n (X; M) = \text{Hom}(C_\eta^n(X), M)
\]

with coboundary

This is a cochain \(CX \) of abelian \(\mathbb{G}_k \).

Call its cohom \(H^n_G (X; M) \).
It is easy to check that this satisfies the axioms required by Brown. We get a dimension axiom as follows:

\[S^0_H = \mathcal{G}_0 \cap \mathcal{S}^0 = \mathcal{G}_0 / H^+ \]

\[C_i (\mathcal{G}_0 / H^+) = 0 \text{ for } i \neq 0 \]

\[C_0 (\mathcal{G}_0 / H^+) = \prod_0 (\mathcal{G}_0 / H^+) \]

\[\prod_0 (\mathcal{G}_0 / H^+) \cdot (\mathcal{G}_0 / K) = \prod_0 (\mathcal{G}_0 / H)^K \]

\[= \sum \begin{cases} 0 & \text{if } K \not\subset H \\ 2G / H & \text{if } K \subset H \end{cases} \]

\[C^i (\mathcal{G}_0 / H^+, M) = \{ \text{Hom}(C_0 (\mathcal{G}_0 / H^+), M) \} \text{ if } i = 0 \]
\[\begin{array}{cl}
\{ 0 \} & i \neq 0 \\
\mathbb{I} M (G/H) & i = 0
\end{array} \]

Hence we have \(H_G^* (\mathbb{I}_M, M) = \mathbb{I} M (G/H) \) \((\star) \)

This theory is representable a \(G \)-coalgebra \(H M \) with \(\mathbb{I}_M \) concentrated in \(\text{dim } D \).

\((\star) \Rightarrow \quad \mathbb{I}_M H M = \left\{ \begin{array}{cl}
0 & i = 0 \\
\mathbb{I}_M & i \neq 0
\end{array} \right. \)

Since \(\mathbb{I}_M H M (G/H) = \left[G/H, H M \right]_G^0 \)

\[= H_G^0 (G/H, M) = \mathbb{I} M (G/H) \]

by previous computation (QED)