In other words the $RO(G)$-graded Mackey functor valued homotopy of HZ is as follows. For $n > -3/2$ we have

$$\pi_1 \Sigma^ {n, 0, 2} HZ = \pi_{1-n, 0, 2} HZ = \begin{cases}
\circ & \text{for } n \text{ even and } i = 2n \\
\bullet & \text{for } n \text{ even and } i = 2n - 2j \text{ with } 0 < j \leq n/2 \\
\square & \text{for } n \text{ odd and } i = 2n \\
\bullet & \text{for } n \text{ odd and } i = 2n + 1 - 2j \\
0 & \text{with } 0 < j \leq (n + 1)/2 \\
0 & \text{otherwise}
\end{cases}$$

For $n < -3/2$ we have

$$\pi_1 \Sigma^{n, 0, 2} HZ = \pi_{1-n, 0, 2} HZ = \begin{cases}
\square & \text{for } n \text{ even and } i = 2n \\
\bullet & \text{for } n \text{ even and } i = 2n + 2j - 1 \\
\square & \text{for } n \text{ odd and } i = 2n \\
\bullet & \text{for } n \text{ odd and } i = 2n + 2j \\
0 & \text{with } 0 < j \leq (-3 - n)/2 \\
0 & \text{otherwise}
\end{cases}$$

We can use Definition 8 to name some elements of these groups.

Note that HZ is a commutative ring spectrum, so there is a commutative multiplication in $\pi_1 HZ$, making it a commutative Green functor. For such a functor M on a general group G, the restriction maps are a ring homomorphisms while the transfer maps satisfy the Frobenius relations (1).