$G_2 = C_2 \uparrow^n$

$\text{MU}((G_2^0)) = \bigoplus_{\mu} \text{MU}_{\mathbb{R}}((2^\mu_{G_2}))$

$= \text{MU}_{\mathbb{R}}((2^{2^n}))$

We have generators

$\overline{\mu} \in \prod_{i \in \mathcal{I}} (i \text{'s MU})$

where $i_G^0 (G$-spectrum $X)$ for $H \leq G$

$= X$ regarded as an H-spectrum

There is a map

$A = \bigoplus_{\mu} \text{SO} \left[s^0, s^2, s^2, s^3, \ldots \right] \rightarrow \text{MU}_{\mathbb{R}}((G_2^0))$
where\[\tilde{\eta}_2 \xrightarrow{\sim} i_2^* \mu U((G)) \]
leads to
\[B = S^0 \left[S^0 p_2, S^2 p_2, \ldots \right] \xrightarrow{\sim} i_2^{2^n} \mu U((G)) \]
Then apply \(N_2^{2^n} \) and get
\[N_2^{2^n} B \rightarrow N_2^{2^n} i_2^{2^n} \mu U((G)) = (\mu U((G))^2)^{(2^n-1)} \]
\[\xrightarrow{\text{multiplication}} \]
\[A \]
\[\mu U((G)) \]
The map \(A \rightarrow \mu U((G)) \) refines \(\pi_* \mu U((G)) \). Consider the spectrum
\[R(\infty) = MU((G)) \wedge S_0 \]

A is a ring over which \(MU((G)) \) and \(S_0 \) are modules.

Reduction Theorem: \(R(\infty) \cong HZ \)

as \(G \)-algebra.

This implies the slice theorem, which identifies the slices of \(MU((G)) \).

Recall the slice cells for a group \(G \):

\[\Sigma (G + H \wedge S^{mpH}) \cdot H \subset G \quad m \in \mathbb{Z} \]
Def: A slice cell as above is regular if it is not a decomensation.

A slice is isotropic if \(k = 0 \).

A slice is cellular if it has the form \(W \subset \mathbb{Z}^2 \)

where \(W \) is a wedge of slice cells.

A cellular slice is isotropic if \(W \) has no free summands.

A C-spectrum \(X \) is isotropic if each of its slices is.
Example: The slice theorem says $MV(\ell_m)$ is isotropic + pure.

Lemma 7.1: If X is pure (and isotropic) and W is a wedge of regular (and isotropic) slices cells, then $X \wedge W$ is pure (and isotropic).

Proof: Follows from definitions. Amalgamating with a regular W preserves the slice filtration. QED

Lemma 2.2: Let $G_1 \subset G_2$ and $H \subset G$, the
index 2 only if RT holds for H.

Then $i_H^* MU((G))$ is pure and isotropic.

Proof: Can show:

$$i_H^* MU((G)) \cong MU((H)) \bigoplus H \cdot \mathbf{b}_1 \bigoplus H \cdot \mathbf{b}_2 \bigoplus \cdots$$

for certain generators $\mathbf{b}_i \in MU((G))$

$$i_H^* MU((G)) = MU((H)) \wedge (\text{wedge of regular})$$

Hence 2.2 follows from 7.1. QED

Proof 2.2 The reduction + slice thms for H imply that for the CR spectrum $R(d)$ defined above.
\[i_{H}^G R(\infty) \cong H^G_\infty \text{ for the G-spectrum } H_\infty, \]

\[\mathcal{L} \text{ is formal } \]

Recall the isotropy separation sequence of G-spectra

\[E C_2^+ \rightarrow E P \rightarrow S^0 \rightarrow E P \]

\[E(C/\Gamma)^+ \]

We have a map \(R(\infty) \rightarrow H^G_\infty \) which we want to show to be an equivalence: smashing with G gives
If in a G-equivariance because each cell in $\mathcal{E} \mathcal{P}$ is induced up from H and we have \mathcal{H}_{ψ}. Hence it suffices to show that h is a G-equivariance.

Back ① let $K < G$

$$(\mathcal{E} \mathcal{P})^K = \begin{cases} \mathcal{E} \mathcal{P} & \text{for } K \neq G, \\ \emptyset & \text{for } K = G \end{cases}$$
\((E^P_+)^K = \begin{cases} \ast & \text{for } K = G, \\ \ast \ltimes & \text{for } K \neq G, \end{cases}\)

\((E^P)^K = \begin{cases} \ast & \text{for } K \neq G, \\ \ast \ltimes & \text{for } K = G. \end{cases}\)

It follows that for any G-spectrum \(X\)

\((E^P \wedge X)^K = \begin{cases} \ast & \text{for } K \neq G, \\ \ast \ltimes & K = G. \end{cases}\)

\((\wedge E^P \wedge X)^G = \left(\bigodot G\right) X = \text{geometric fixed point set by definition.}\)
Hence to show that \(\phi \) in \(\Theta \) is a \(C \)-equivalence, it suffices to show that \(\phi \circ g \) is an equivalence.

i.e., \(\Phi \in \mathbb{R}(\mathcal{G}) \iff \Phi \circ g \in \mathbb{R}(\mathcal{H}) \).