Summary of Kervaire–Milnor

\[\mathcal{P}_{4m+2} = \text{gp of exotic } (4m+1) \text{-spheres} \]

that bound framed \(n\)-manifolds

It is either 0 or \(2^1/2\) depending on

the following

Kervaire constructed a framed \((4m+2)\)-

manifold with boundary \(N^{4+m+2}\) with

1) \(\phi(N) \neq 0\)

2) \(\partial N\) is a top \((4m+1)\)-sphere \(\cong 4m+1\)
If Σ^{4m+1} is exotic then $b^\mathbb{P}_{4m+2} = \pm 2$

and a smooth closed framed manifold M^{4m+2} has $\phi(M) = 0$.

If Σ^{4m+1} is the standard sphere, then $b^\mathbb{P}_{4m+2} = 0$ and $M^{4m+2} = N \cup_2 D^{4m+2}$ has $\phi(M) \neq 0$.

Browder's Thm 1969: $\phi(M^{4m+2}) = 0$

and $b^\mathbb{P}_{4m+2} = \pm 12$ in all cases except possibly $m = 2^{j-1} - 1$

for $j > 0$. We get $\phi(M^{4m+2}) \neq 0$.
for \(m = 2^k - 1 \), \(k \geq 2 \) in the Adams SS is a permanent cycle. The corresponding root in \(\tilde{\mathbb{S}}^{2^k + 1 - 2} \) is denoted by \(\theta_j \). It is known to exist for \(1 \leq j \leq 5 \).

In 1967 Mahowald showed existence of \(\theta_j \) for \(j \) has nine consequences.

DOOMSDAY HYPOTHESIS: only finitely many \(\theta_j \) exist.
Thm: NHR 2009 Q_j does not exist for $j \geq 2$.

Strategy of Proof: There is a ring spectrum Λ with 3 properties:

1) Detection Thm. The unit map
$g \rightarrow S \rightarrow \Theta$ (if it exists) to a nontrivial element in $T \times S$

2) **Periodicity Thm.** $T \times S$

depends only on $R \bmod 256,$

$2^{256} S \equiv S$

3) **Hopf Thm.** $\Pi_{-2} S \equiv 0$

Now 2) and 3) $\implies \Pi_{254} S \equiv 0$

$254 = \dim \Theta \geq 1$ has no nontrivial image in this Θ!

How do we construct $S \Theta$?
We derived KR from $MVIR$ by a procedure that involved inventing a class $x \in \pi_0 MVIR$ and killing some other classes. This required identifying the slices of $MVIR$, which requires the reduction theorem, due in this case to Hu-Kriz 2001.

We find that $S^k KR \simeq KR$ as KR is a \mathbb{C}_2-spectrum.
\[
K_{\mathbb{C}}^+ = K_{\mathbb{R}}^+ = KO \setminus \text{the spectrum for real (as opposed to complex \ K-theory). If we ignore the C_2^* \text{-structure, } \mathbb{Z}^2 \cdot K = K}
\]

There is an analogous construction that starts with \(N_{2^n}^\infty \mathbb{MV}_{\mathbb{R}} \), which is a \(C_{2^{n+1}} \)-spectrum. For each \(n \), the slices can be described explicitly. They are
where \(C_2 = C_2^m \) and it is a nontrivial subgroup of \(C_1 \). We can have \(m < 0 \) after we invert \(x \). We know \(\Pi \rightarrow C_4 \times H \), \(S_{\Pi^m \times H} = 0 \). This result will lead us to the gap theorem.

\(\Omega \) is the \(C_6 \)-fixed but set of the telescope derived from
\[N_2^8 \text{MUR}^R \]

\[\chi^{-1} N_2^8 \text{MUR}^R = 52 \]