Recall

Prop 2.10 Let $b \in \mathfrak{g}_{z_0}^{-1}, x \in \Pi_2 \hat{\otimes}^n HZ$

For each $k > 0$, x^k is in the image of

$\Pi \otimes \mathfrak{g}_{z_0}^{-1} M(z) \rightarrow \Pi \otimes \mathfrak{g}_{z_0}^{-1} HZ$

Proving this involves chasing a diagram, the smash of $ER \rightarrow S^0 \rightarrow ER$ and

$M \rightarrow M(z) \rightarrow HZ$
Prop 7.12: Any choice of \(y \) has a \(\neq 0 \) image in \(IV \) \(E \mathbb{P}_h^1 \times \mathbb{H}^2 \).

This implies the Reduction Theorem.

let \(X = R(C_k - 1) \)
Will consider the slice tower for E.
We know everything about its restriction to H (by inductive hypothesis) and hence its smash product with E_{P_i}.

Prop 2.14 (i) $\pi_* E_{P_i} \wedge P_m X = 0$ for $0 < m < \infty$.

(ii) There is an exact sequence

$$\pi_* E_{P_i} \wedge P_d X \rightarrow \pi_* E_{P_i} \wedge X \cong Y_k \rightarrow Y_m$$

Slice connective cover

Proof (i) follows by induction on $|E|$. (ii) The map $\pi_* E_{P_i} \wedge P_d X \rightarrow \pi_* E_{P_i} \wedge P_i X$
is onto we have a cofiber sequence
\[E^2_+ \left(P_1 X \to X \to P_0^0 X \right) \]
and we know \(E^2_+ P_0^0 X = E^2_+ HZ \) \quad QED

It suffices to show \(y \) is not in the image of \(\pi_V E^2_+ \to P_1^1 X \).

\(\tau \in \pi_V E^2_+ \to P_1^1 X \),

\(\pi_V E^2_+ \to P_1^1 X \).

Let \(y \in G \), be a generator.

Prop 7.11

\[\pi_V E^2_+ \to P_1^1 X \xrightarrow{\alpha} \pi_V X \xrightarrow{i_0} \pi_V^1 X \xrightarrow{a} \]

The image of
is contained in the image of $1 - \delta$, using the action of $\mathbb{Z}_2 \mathbb{G}$ on $\Pi^*_X X$.

We will show that $\text{im} \alpha$ is contained in the image of $\tilde{\Gamma}_H G : \Pi^*_V X \to \Pi^*_V G X$

\[\Pi^*_V X (G/H) \quad \Pi^*_V X (G/H) \]

Will also show the \[\gamma (i_0^* y_K) = -i_0^* y_K \]

so $i_0^* y_K$ is not in the image of $(1 - \delta)$.

y maps $i_0 (N^*_Z M_{C_K}) = 2$ and $\delta (2) = (-1)^{c_2} 2 = -2$.

\[y \]
Prop 7.15 Let $Y = 0$ (i.e. (-1))- etale connected
be a G-scheme. Then the image
of $\pi_0 E^{G,+}_Y (G/L_G) \to \pi_0 Y (G/L_G)$
is in the image of $T_{M,G}$. \\
\textbf{Pf} Since $Y = 0$- etale connected
$T_{M,G} C_{+} Y \text{onto} \pi_0 E^{G,+}_Y Y \to \pi_0 Y$ \\
$\pi_0 Y \quad \rightarrow$ $T_{M,G} Y$ \\
\text{QED} \\
\text{Let } Y = \Sigma Y_P \quad X \\
\text{and } \text{let} \\
\text{Con} \text{image of } \Sigma Y_P \quad X \\
\rightarrow \pi_0 Y$
is in the image of T_N.

Cor 7.16: Same for $T_N^G \Sigma$.