Recall Mackey functor chain \mathcal{A} for $X = S^m$ \[C_0 = \mathbb{C}_2 \]

For $m=2$, $m=3$:

\[
\begin{array}{cccc}
2 & 2 & 0 & 2 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

$\xi \mapsto [-1]$ \[g = \text{sign rep} \]

Homology for $m=3$:

\[
\begin{array}{cccc}
2/2 & 0 & 2/2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
2/2 & 0 & 2/2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
2/2 & 0 & 2/2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
2/2 & 0 & 2/2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

$\xi(1-r) = \xi - \xi^2 = \xi - 1 = -(1-\xi)$ \[\mathcal{Z} = \frac{2\xi}{1+\xi} \]

Def. A rep \mathcal{C} is oriented if the matrix
associated to each elt in G has det 1. Example: no is oriented iff n is even

$$\det (-I) = (-1)^n$$

In a Mackey functor, M for an abelian gp G, $M(G/H)$ has an action of the gp G/H.

Remark: Recall $\pi_i : x(G/H) = \prod_i (x^H)$

but in our examples ($n = 2, 3$)

$$H_x^i x(G/H) \neq H_x^i (xG)$$

because $x^G = S^n$ lent
\[H^* X(\mathbb{Q}/\mathbb{Z}) \neq H^* S^0 \]

What is the meaning of this group? ??

Another example: \(G = C_4 \), \(X = S^R_{C_4} \)

\(R_4 \) = regular rep of \(C_4 \)

\(= \) permutation action on \(R^4 \).

This rep has a trivial 1-dimensional subspace generated by \((1, 1, 1, 1) \)

\(R_4 \) = reduced regular rep

\(= \) subspace \(\{ (w, x, y, z) : w + x + y + z = 0 \} \)

\(S(R_4) \approx S^2 \). Let \(x \) be a generator of \(C_4 \).
\(\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \) is the eigenmatrix for \(Y \) in \(\mathbb{R}^4 \) in \((1, -1, 1, -1) \).

\(Y \) reflects through equator (swapping the poles) and rotates around vertical axis by \(\pi / 2 \).

Cellular structure on \(Y = S(\mathbb{R}^4) \).

\(Y^0 = S^0 = 2 \) poles. We have 4 1-cells as shown.

And 4 2-cells.

A formulates the cells in each dim.
S^4 will have cells in dim $1, 2, 3$ that are double cones on the cells of Y, along with 2 0-cells that are fixed by G.

S^4 has a single 0-cell 2 fixed 1-cell 3 by G.

cells in dim $2, 3, 4$ obtained from the cells of Y by joining with S^1.

The resulting reduced cellular chain complex is $N = C_2 \otimes C_4$.
\[2 \cong \mathbb{Z}_G/4 \cong \mathbb{Z}_G \cong \mathbb{Z}_G \]

The homology of this complex is \(H_* \).

\(H_4 \) is generated by \(\alpha = (1-\gamma)(1+\gamma^2) = 1-\gamma+\gamma^2-\gamma^3 \) \((1+\gamma)^2 = (1+\gamma)(1-\gamma)(1+\gamma^2) = (1-\gamma^2)(1+\gamma^2) = 1-\gamma^4 \)

\[= 0 \]

The complex of Mackey functors is