More of Patrick's talk

Thm 2. Let A be a collection of Mackey functions such that

1) $\text{RVE} A$ for all H,G_i and all G/H-modules V

2) If $0 \to N' \to N \to N'' \to 0$ is a SES

where two are in A, the third
in $\text{RVE} A$

Then A is the collection of all Mackey functions

Proof: Partition the subgroups of G_i as follows

$S_0 = \{ e \}$

$S_i = \{ \text{subgps not in } S_{i-1} \}$, where each

broken subgroup is in S_i, for $i \leq j$.

Since G_i is finite, $S_m = \{ e \}$ for some m.

Order and list the analogs as follows

$S_0 = \{ e \}$

$S_1 = \{ H_{i_1}, H_{i_2}, \ldots, H_{i_m} \}$

$S_0 = \{ H_{i_1}, H_{i_2}, \ldots, H_{i_m} \}$

$S_m = \{ H_{i_1}, H_{i_2}, \ldots, H_{i_m} \}$

$S_m = \{ H_{i_1}, H_{i_2}, \ldots, H_{i_m} \}$

Def: A Mackey functor M is of type (i, k) if $M(C/H, i) \neq 0$, and

$M(C/H, i) = 0$ for all $j \neq i$ and $y' = y, k < k'$

Proceed by downward induction.

Note: If $M(C/H)$ for all broken H, then

$M = RM(C/H)$

Assume M is of type (i, k) and all
If greater than in A.

meaning tight \((j,k)\) with \(j > j'\) or \(j = j'\) and \(k > k'\).

There is a map \(N : M \rightarrow RM(G/H_{i,i},k)\).

Consider the SES

1) \(0 \rightarrow \ker N \rightarrow M \rightarrow \text{im } N \rightarrow 0\)

2) \(0 \rightarrow \text{im } N \rightarrow \text{RM}(G/H_{i,i},k) \rightarrow \text{coker } N \rightarrow 0\)

If \(\text{coker } N \in A\), then \(\text{im } N \in A\).

If \(\text{im } N\), \(\ker N \not\in A\), then \(M \not\in A\).

SUFFICE to show \(\ker N\), \(\text{coker } N \in A\).

By construction both \(\ker N\) and \(\text{coker } N\)

vanish on \(G/H_{i,i}\), and are in \(A\) by induction. QED
Properties of G-spectra

See HHR Appendix A for details of the definitions.

Examples Let V be a representation of G. Define a G-spectrum $E = \sum_{n} S^{V}$ (by abuse of notation). For all W, $E_{W} = S^{V} + W$. Define $E = S^{-V}$ by $E_{W} = S^{W-V}$ for all $W \supset V$, where $W-V$ is orthogonal complement of V in W.

NOTE: To get a spectrum E, it suffices to define E_{W} for a cofinal collection of W's.
e.g. for all W containing V, we can define $S_{W-V} = S_{W} \cap S_{V}$, as previously defined.

We get a sphere spectrum for each virtual rep. $W-V$.

Let $\Pi_{W-V} X = \left[S^W, X \right] G$

$= \left[S^0 \vee S^{V-W-V} X \right] G$

$= \Pi_0 (G(V-W-V)X)$

We get homotopy gfs graded by RO(G), the orthogonal rep ring of G.

Collectively, these gfs are denoted $\Pi_{W-V} X \vee \pi_{-W-V}$.
\[\text{Let } X = \text{ 2-graded homotopy gfs of } X. \]

Quick remark in \(RO(G) \): \([G \text{ finite}] \)

Let \(R(G) = \text{ complex rep ring of } G \).

Reference: Serre's book

Linear reps of finite gfs.

Let \(V \) be a complex rep of \(G \).

(finite dimensional). Choose a basis for \(V \), so we have a hom \(G \to \text{GL}_n(\mathbb{C}) \)

\(\text{so we have a hom } \)

\(G \to \text{GL}_n(\mathbb{C}) \)

For each \(g \in G \), consider \(\text{Tr}_n(\rho(g)) \)

\(= \text{trace } = \text{sum of diagonal entries.} \)
3. **trace**

1) Trace is independent of basis choice

2) If \(g \) and \(g' \) are conjugate, then they have the same trace

3) We have a map \(\mathbb{R}(G) \rightarrow \text{ring Cl}(G) \) of completed valued fields in the set of conjugacy classes in \(G \).

It is a ring homomorphism, and \(\mathbb{R}(G) \otimes_{\mathbb{Z}} \mathbb{C} = \text{Cl}(G) \).

But the rank of \(\mathbb{R}(G) \) as a free abelian group is the number of conjugacy classes. The number of irreducible \(\mathbb{C} \)-valued irreducible representations is the number of conjugacy classes.
classes in character tables.

C_4 has 4 columns, one for each conjugacy class. There are 4 rows for each irreducible rep.

$C_4 = C_4$ with generator y

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>y</th>
<th>y^2</th>
<th>y^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 	o [1]$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$y 	o [i]$</td>
<td>1</td>
<td>i</td>
<td>i</td>
<td>-1</td>
</tr>
<tr>
<td>$y^2 	o [-1]$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>$-i$</td>
</tr>
<tr>
<td>$y^3 	o [-i]$</td>
<td>1</td>
<td>$-i$</td>
<td>-1</td>
<td>i</td>
</tr>
</tbody>
</table>