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The purpose of this paper is to describe the slice spectral sequence of a 32-
periodic Cy-spectrum Ky (to be defined in related to the C; norm MU\(C4) =
N3MUR of the real cobordism spectrum MUg. Part of this spectral sequence is
illustrated in an unpublished poster produced in late 2008 and shown at the end of
this paper. It shows the spectral sequence convering to the homotopy of the fixed
point spectrum K}Cf. Here we will describe the corresponding spectral sequence of
Mackey functors converging to the graded Mackey functor 7, Kyy. The Cg analog
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of Ky is 256-periodic and detects the Kervaire invariant classes 6;. The Cy analog
is the real K-theory spectrum Kgr.
We will rely extensively on the results, methods and terminology of [HHR].

1. GENERAL NONSENSE ABOUT EQUIVARIANT STABLE HOMOTOPY THEORY

We first discuss some structure on the homotopy groups of a G-spectrum X. For
each representation V we get a Mackey functor 7 X = 7%~V X; we will often
suppress G from the notation when it is clear from the context. Its components
are the ordinary homotopy groups of various fixed point sets. In [HHR] 2.2.5] the
group

TG X (G/H) = m(X™)
(for an integer k) is denoted by 7 X = [S* X]H. Here S* has the trivial group
action, so an H-equivariant map to X must land in the fixed point spectrum X.
Thus
7TI€IX = Tk (XH)v
the ordinary kth homotopy group of the ordinary spectrum X*#. Since the Weyl
group of H acts on X, this group is a module over it.
For a representation V' of G, the group

TG X(G/H) = nf X =[SV, X]"
is isomorphic to
[SO, 8™V AXH =mo(S™V A X)H.
However fixed points do not respect smash products, so we cannot equate this group
with
mo(S™V AXT) =[SV X ) = myn X = 150 X(G/H).
Conversely a G-equivariant map SV — X represents an element in
SV, X% = 78X =25 X(G/G).
For K C H C G we have maps

Tr%
TGX(G/H) = x$X(G/K)
| me H
R(EVXOE m(SV XK

which we call the fized point restriction and transfer maps. When X is a ring
spectrum, we have the fixed point Frobenius relation

(1) Tri(Resf(a)b) = aTri(b) foraen, X(G/H) and b € 7, X (G/K).
In particular this means that
(2) aTril(b) =0 when Res% (a) = 0.

We can also regard X as an H-spectrum for any subgroup H of G; we will not
make a notational distinction between these two structures on X. As such it has
an RO(H)-graded Mackey functor over H of homotopy groups. For simplicity we
assume now that G is abelian. Recall that for a Mackey functor M over H, the
abelian group M(H/K) (for a subgroup K of H) is a module over Z[H/K]. For
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the RO(H)-graded abelian group m X(H/K) for a G-spectrum X, this module
structure extends to one over Z[G/K].

We will define maps relating these Mackey functors over the various subgroups
and call them group action restriction and transfer maps, denoted by ri and z%.
The map fg is induced by the forgetful functor from G-spectra to H-spectra de-
noted in [HHR], 2.2.4] by i%;; for trivial H it is denoted by 4.

Given a representation V of G restricting to W on H C G and a G-spectrum X,
we have maps of G-spectra

pinch

(3) sv (G/H)4+ NSV

Gy SY = Sy

fold

Since for each subgroup L C H,
iy X(H/L) = =g F(S",X)(H/L)
= 2§ F(Sw, X)(G/L)
= nF((G/H)+ ASY, X)(G/L),
the pinch and fold maps induce
ti
XTI T ompX
a7

5 (H/L)

Ty X(G/L) Ty X (H/L)
n¢X(G/K) ___ _ ap X(H/HNK)
rG(G/K)
where the X on the right is the restriction of the X on the left to an H-spectrum,
K C G and L C H. We can conjugate elements on the right by elements of G with
the subgroup H acting trivially.
The group action transfer nominally depends on the choice of V' that restricts

to W, but two such choices V' and V' lead to canonically isomorphic groups. For
L C H C G we have a diagram

T X(G/L)

iy X(H/L)
o

¢, X(G/L)
The groups on the left are isomorphic because they depend only on the restrictions
of V or V' to L. By assumption they have the same restrictions to H.

2. THE RO(G)-GRADED HOMOTOPY OF HZ

We describe part of the RO(G)-graded Green functor m,(HZ), where HZ is the
integer Filenberg-Mac Lane spectrum HZ in the G-equivariant category, for some
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cyclic 2-groups G. For each actual (as opposed to virtual) G-representation V' we
have an equivariant reduced cellular chain complex CV for the space SV. It is a
complex of Z[G]-modules with H,(C") = H,(SIV!).

One can convert such a chain complex CY of Z[G]-modules to one of Mackey
functors as follows. Given a Z[G]-module M, we get a Mackey functor M defined
by

4) M(G/H)=M" for each subgroup H C G.

We call this a fixed point Mackey functor. When M is a permutation module,
meaning the free abelian group on a G-set B, we call M a permutation Mackey
functor [HHRI, 2.45]. Given a finite G-CW spectrum X, meaning one built out of
cells of the form G I/L\I e", we get a reduced cellular chain complex of Z[G]-modules

C, X, leading to a chain complex of fixed point Mackey functors C', X. Its homology
is a graded Mackey functor H,X with

H,X(G/H) =X NHZ)(G/H) = m.(X NHZ)".

In particular H,X(G/e) = H.X, the underlying homology of X. In general
H_X(G/H) is not the same as H,(X™) because fixed points do not commute
with smash products. We will see an illustration of this below in Example |5, where
we will also see that H, X need not be a graded fixed point Mackey functor.

For a finite cyclic 2-group G = Cy«, the irreducible representations are the
2-dimensional ones A\(m) corresponding to rotation through an angle of 27m /2" for
0 < m < 2F=1 the sign representation o and the trivial one of degree one, which
we denote by 1. The 2-local homotopy type of S*™) depends only on the 2-adic
valuation of m, so we will only consider \(27) for 0 < j < k—2. The planar rotation
A(2¥~1) though angle 7 is the same representation as 20.

We will describe the chain complex CV for

V=a+bo+ Z ciAN(2F 7).
2<j<k

for nonnegative integers a, b and ¢;. The isotropy group of V' (the largest subgroup
fixing all of V) is

Cor =G forb=cp=---=¢, =0
Gy ={ COp-1=G forb>0andcy=---=¢, =0
Czk—e for ¢y > 0 and Cl+z=~-~=Ck=0

The sphere SV has a G-CW structure with reduced cellular chain complex C'
of the form

Z for n = dj
C,V o Z[G/GI} for dg <n <d;
") Z[G/Cyr-;] fordj_1 <n<djand2<j</{
0 otherwise.
where
a for j =0
di=< a+b forj=1

a+b+2co+---+2¢c; for2<j<Y,
so dy = |V|.
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The boundary map 8, : C — CY_, is determined by the fact that H,(CV) = H,(SIV).
More explicitly, let v be a generator of G and

Qj:nyt for 1 <j<k.

0<t<2i
Then we have
A\ forn=1+dp
5 — (1 =7)a, forn—dyevenand 2+dy<n<d,
" oz, forn —dpodd 2+dy <n <d,
0 otherwise,

where V is the fold map sending v — 1. We will use the same symbol below for
the quotient map Z[|G/H| — Z|G/K] for H C K C G. The elements x,, € Z[G] for
2+ dy <n < |V] are determined recursively by 214, = 1 and

TpTp—1 = 9j for 2 + dj,1 <n<2+ dj.

It follows that H‘V|CV = Z generated by either x|y or its product with 1 — 1,
depending on the parity of b.
This complex is
oV = xVelgV/ve

where V) = V&. This means we can assume without loss of generality that Vj = 0.

An element

re H,CV(G/H)=H,S"(G/H)
corresponds to an element = € w,,_HZ(G/H).

We will denote the dual complex Homz(CV,Z) by C~V. Its chains lie in di-
mensions —n for 0 < n < |V|. An element © € H_, (—V)(G/H) corresponds to an
element z € my,_, HZ(G/H).

The method we have just described determines only a portion of the RO(G)-
graded Mackey functor w, HZ, namely the groups in which the index differs by an

integer from an actual representation V' or its negative. For example it does not
give us m,_,1)HZ for |G| > 4.

Example 5. The case G =Cg and V =0+ A(1). The representation V is not
orientable since it involves an odd multiple of o. Its unit sphere S(V) is S? with
the following action of G. There is a generator vy which rotates the equator though
an angle of /4 while reflecting through the equatorial plane. Thus the poles are
fized by each proper subgroup, and no other point is fixed by a nontrivial subgroup.
It follows that in the one point compactification SV of V' we have

SV forH=¢e
(SVYH ={ S for H=Cy or Cy
SO forH=G

S(V) has a G-CW structure with

e two O-cells (the north and south poles) interchanged by ~y,

o cight 1-cells (equally spaced longitudinal lines joining the two poles with
alternating orientations) cyclically permuted by v and

o cight 2-cells (regions between two adjacent longitudinal lines) cyclically per-
muted by 7.
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This means that SV has a similar G-CW structure with two fried 0-cells in which
each positive dimensioanl cell is the double cone on a cell in S(V). The reduced
cellular chain complex CV is

(©) — H H
Z<~——17[G/q]

where xo = 1, 23 = 1+ and 4 = (1 ++*)(1 +~*). The number beneath each
arrow indicates its rank as a homomorphism. Hs C Cj3 is the subgroup generated
by

(1=7)zs= 1= +)(1+7%).

The corresponding chain complex of fized point Mackey functors is

cy cy cy ey
7 0 2
1\( })2 o 1+'y\( jv (_7) 1+’y\( ))V Lin 1+’y\( jv
O f/f S
1 2 1 2 14++2 v 142 v
(Zj<—Y 2(G/G) < 7]G /0y < 2(G/ )
1 2 \c 72 1+v4\c )\v 1+v\c )\v
v/ Y z¢/¢ )~ 1Z[C nul— e
and its homology is
H,SY H,sv H,SY H,SY
Z/2 0 72 0
() {) () ()
0 Z/4 0 Z_
() 1 ): () )2
0 7/2 0 Z_
() () () 1 )2
0 0 0 Z_

where Z_ denotes Z|G/H]/(1 + ~y) for the appropriate proper subgroup H. In
these diagrams of Mackey functors M, the top and bottom groups are M (G/G) and
M(G/e) with the values of M on intermediate groups in between. Downward and
upward pointing arrows are restrictions and transfers respectively.

Note that these homology groups are not fixed point Mackey functors, and H,(G/H)
is not the same as H,(SY) for any nontrival subgroup H.
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For the dual spectrum S~ we apply the functor Homg(-, Z) to (@ The resulting
chain complex of fixed point Mackey functors is
o cy coy cy

7. 1 7 0 2

()2 v v - 7v 1 ﬁv

72— g — gziaie — L 7i6/a

(e 1 )2 w2 ] wr{ Jv

Z il Alelled M 2[G)Cy) —  7GC)
1£ij . Z1[g/7Gz/} . 14y é[cz]v - 14y é[g]v
with homology
HyS™v H SV H_,S$7Y H 57V
0 0 0 Z/2
() () () of 1
0 0 0 Z_
() () () :(
0 0 0 Z_
() () () :( h
0 0 0 Z_

Notice that H_5S~V is quite different from H4SY .

Example [5]illustrates the nonoriented case of the following, whose proof we leave
as an exercise.

Proposition 7. The top homology group. Let G be a finite cyclic 2-group and
V' a nontrivial representation of G of degree d with V¢ = 0 and isotropy group Gy .
Then CY = C~) = Z[G/Gy] and

(i) If V is oriented then H,SY = Z, the constant Z-valued Mackey functor
in which each restriction map is an isomorphism and each transfer Trg
is multiplication by |K/H|. H_,S7V = Z(G,Gy), the constant Z-valued
Mackey functor in which

ResK — 1 for K C Gy
SH =\ |K/H| forGy CH

and

K _ |K/H| for K C Gy
71 for Gy C H.
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(These determine all restrictions and transfers.) The functor Z(G,e) is
also known as the dual Z*. These isomorphisms are induced by the maps
H,SY H_,57

Z(G,Gvy)

.

Z[G/Gy]

(ii) IfV is not oriented then H, SV = Z_, where

[0 forH=G
Z_(G/H) = { Z_  otherwise

where each restriction map Resg s an isomorphism and each transfer Trf(
is multiplication by |K/H| for each proper subgroup K. We also have
H_,S7V =7Z(G,Gy) , where

0 for H=G andV =0
Z(G,Gy) (G/H)=< Z/2 forH=G andV # o
Z_  otherwise

with the same restrictions and transfers as Z(G, Gy). These isomorphisms
are induced by the evident maps

H,SY H_ ;57"

7 — L 7(6/Gy] — - 7(G, Gy)

Definition 8. Three elements in 7¢(HZ). Let V be an actual (as opposed to
virtual) representation of the finite cyclic 2-group G with V& = 0 and isotropy
group Gy .
(i) The equivariant inclusion S° — SV defines an element in =_,S°(G/G) via
the isomophisms

1_vS%G/G) = 1,8V (G/G) = moSV" = mS° = Z,

and we will use the symbol ay to denote its image in ©_HZ(G/QG).
(i) The underlying equivalence S¥ — SIV| defines an element in

mySVI(G/Gy) = 7y S°(G/Gy)

and we will use the symbol ey to denote its image in wy_\, HZ(G/Gy).
(iii) If W is oriented, there is a map

) w
A:Z = Cpy,
as in Proposition[7 giving an element
uw € HyyS"(G/G) = 7w wHZ(G/G).
For nonoriented V' Proposition[7 gives a map
. 1%
A_:Z_ = Cy,
and an element

uy € Hjy SV (G/G') =y _vHZ(G/G').
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Note that ay and ey are induced by maps to equivariant spheres while uyy is
not. This means that in any spectral sequence based on a filtration where the
subquotients are equivariant HZ-modules, elements defined in terms of ay and ey
will be permanent cycles, while mulitples of uy, can support differentials.

Note also that ag = ey = ug = 1. The trivial representations contribute nothing
to m,(HZ). We can limit our attention to representations V with V& = 0. Among
such representations of cyclic 2-groups, the oriented ones are precisely the ones of
even degree.

Lemma 9. Properties of ay, ey and uy . The elements ay € m_ HZ(G/G),
ev € my_v\HZ(G/Gv) and uw € myyw|_wHZ(G/G) for W oriented satisfy the
following.
(1) ay4+w = ayaw and Uy +w = uyuw.
(ii) |G/Gyv|ay =0 where Gy is the isotropy group of V.
(iii) For oriented V, Trgv (ev) and Trg:/ (ev 1o ) have infinite order while Trgv (evio)
has order 2 if |V| > 0, and Trgv(eg) =0.
) For oriented W, Trgv(ew)uw =|G/Gw| € n HZ(G/G) = Z.
(v) aviw TG, (evyv) =0 if [V] > 0.
) ForV and W oriented, uWTrgV (eviw) = |GV/GV+W|TrgV(eV).
) The au relation. ForV and W oriented representations of degree 2 with
Gy C Gw, awuy = |Gw /Gy layuw.
For nonoriented W similar statements hold in =, HZ(G/G"). 2W is oriented
and ugw is defined in oy _ow HZ(G/G) with Res&, (ugw) = u?y .

Proof. This follows from the existence of the pairing CV ® CW — CV+W. It
induces an isomorphism in Hy and (when both V' and W are oriented) in Hjy 4.
(i) This holds because Hy(V) is killed by |G/Gyv|.

(iii) This follows from Proposition lﬂ

(iv) Using the Frobenius relation we have

Teg (ew)uw = Trg (ewRes{ (uw)) = Tv& (|G/Gv|) = |G/Gy|.

(v) We have

G . a—|V|-U W-U
avyw T, (eviv) © S VI=IUl 5 5 .

It is null because the bottom cell of SW~U is in dimension —|U].

Since V is oriented, then we are computing in a torsion free group so we can
tensor with the rationals. It follows from that

a _ |G/Gvawl|
Ter+W (€V+W) - Uy Uy
G |G/Gv|
and TI'GV (ev) = T
G/G
SO UWTrgV+W (6V+W) = M — IGV/GV+W|TrgV (ev).

uy
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The relevant chain complexes are

0 1 2 3 4
o Z <"V 7]G/Gy] ~—— Z[G/Gy]
cw . 7 <" 71G/Gw] ~——— Z[G/Gw]
oVEW . 7 <" Z(G/Gw] ~—— Z[G/Gw] =~ Z]G/Gy] = Z]G /Gy
m24\ T
] | Z(G/Gy] 0 Z d m
5 ZIG/Gv]|®Z 5 ® 5 T(V,W) 5
CV @zCV: Z<— ® <  TWV,W) <= ® 2T(V,W)
7 ® Z[G/Gw] ® T(V,W)

Z ® Z|G/Gw]

where Vy and Vy are fold or reduction maps sending each power of v to 1,
e ¥
0<i<|G/Gw|

and
T(V,W) = Z[G/Gv] ©z Z[G/Gw| = €D ZIG/Gv].
IG/Gw]

To describe the maps m; and 9; we use left matrix multiplication on column vectors.
We have

(91 = VV VW ] mp; = [ VV,W 1 }
1-— ?
0 = 07 ? 187:| ma = [vva ? 1}

where Vy,p is the reduction map and the unidentified maps from 7'(V, W), namely
03, 04, m3 and my, are not relevant here.
We have a noncommuting diagram

ov Gl ov g ow
U;IZ CV¢+W‘Z;
UVQW av®C v QWSW

where the maps to the relevant summands are

Z(G /Gy ] ———— Z[G /G| @ Z
AVT \LVV,W
v/ Z|G/Gw]

= H

Z[G )Gy =——=Z ® Z|G/Gw]
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where

Ay = > ooy

0<i<|G/Gv|

A = S

0<i<|G/Gw|

The upper composite is |Gy /Gy | times the lower one, so awuy = |Gw /Gy |ayuw
as claimed. O

3. THE CASE G = Cy

Now let G = Cy with generator v, and let G’ C G be its index 2 subgroup. Then
the above discussion leads at a diagram

RO(G) RO(G) v/
Z 6 X(G/G)
Res) Trj
t
(10) i G f/—\ G’ INPali
Z|G/G] m (X)(G/G) my X(G'/G)
R
rh
Rcsf Trf Rcsf Trf
th t
<~ , “ T~
Ale] xd(X)(G/e) gl X(G'/e) T X
~ = &2/

Here the homotopy groups are modules over the rings shown on the left and graded
over the indexing groups shown above. The group action transfers ¢3 and t? are
defined only on groups indexed by representations the smaller group which extend
to representations of the larger group. We will make no use of them in this paper.

In the bottom row each homotopy group is an underlying homotopy group of
X depending only on the degree of the indexing representation. The group action
restriction maps are isomorphisms. The group action transfers are

(ri(x) = 1+~ and ta(ra(y)) = (1 +7)y.

In the middle row each homotopy group depends only on the restriction of the
representation to G’. The restriction rj3 is an isomorphism in each RO(G)-graded
degree, but it misses half of the RO(G’)-graded degrees. The transfer is multipli-
cation by 1+ v when the representation of G’ is the restriction of one of G.

We need some notation for Mackey functors to be used in spectral sequence

charts. The first four in Table [1|are fixed point Mackey functors , meaning they
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TABLE 1. Some Cy-Mackey functors

| a [u] a . .
z Z 0 0 /2 /2
1(Zy2 A[\( )V] \(ZT (OY {0 Al v
2(G/C’ - 0. | z/206/a)
{2 1 e 1 )2 { {) ()
v/ 2(6/c) 7 ZIG/G- | o 0
0 i v A N N
Z/2 Z/2 7/2 7/2 (Z§ JZ‘T
of T Al v of h1 1 Mo 2 1 Ay v
£Zy Z/2(G/G) ﬁZ/Z i/z z Z[G/G]
L S R I e
Z_ - 0 0
=i o w 8 . N
Z 7/4 Z/2 Z 0 0
2‘( 71 1 P2 o M al Vv {7V { )
Z Z/2 7/2 Z[G/G" | Z)2 Z-
1‘( §2 () o v N R () 2{ )1
z 0 Z[G/G')- Z[G) 0 Z-
are fixed points of an underlying Z[G]-module M, such as
Z = Z[Gl/(v-1) Z[G/G'] = Z[G]/(v*-1)
7z = Z[G)/(y+1) Z2[G/C] = ZIG/(y +1).
There are short exact sequences
0 0 a g 0
0 ° O a 0
0 v o ° 0
0 ° o A 0
0 N a o 0
0 = O ° 0

Here the hat symbol is used for a Mackey functor induced up from Cs, for which
our notation is shown in Table [2] where N, the dual of O, is the kernel of the
surjective map 00 — e.
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TABLE 2. Some Cs-Mackey functors

O =] s N 0 v A O
Z 0o | z)2| z z/2 | z/)2 | Z/2 Z
N( 32 \( 7 ) 2\( 31 Oﬁ )\1 04 71 14 70 A\( ij
z |Z2-] 0 z z. | zp2 | z)2 | ZG)

We have short exact sequences
(11) 0 N O . 0
(12) 0 ° O =) 0

Proposition 13. Exactness of Mackey functor induction. The induction
functor above is exact. It sends a Co-Mackey functor M of the form

M(Cs/Cy)
Resfﬁ j\Trf

M(Cy/e)

to the Cy-Mackey functor ﬂ of the form
M(C4/Cy) = M(C5/Cy)
A®M(02/C2)\( ’)V®M(Cz/02)
M(Cy/Cs) = Z[C4] @71, M(C2/Ch)
Z[C4]®Z[CQ]RES?\< 7Z[C4]®Z[02]Trf
M(Cy/e) = Z[C4] ®zjc,) M(Cs/e)

The same holds for induction up to G of a Mackey functor defined for a subgroup
H of G for any finite G.
Definition 14. A Z[C,]-enriched Cy-Mackey functor. For a Cz-Mackey func-
tor M as above, M will denote the Cy-Mackey functor enriched over Z[Cy] defined
by

M(Co/H) = Z[C4] @z)c,) M(C2/H)

for H = Cy or e with structure maps as above.

4. SOME CHAIN COMPLEXES OF MACKEY FUNCTORS

As noted above, a G-CW complex X, meaning one built out of cells of the form
G+ I/j\[ €™, has a reduced cellular chain complex of Z[G]-modules C, X, leading to a

chain complex of fixed point Mackey functors (see ) C,.X. When X = SV for
a representation V', we will denote this complexes Q . Its homology is the graded
Mackey functor H, X . Here we will apply the methods of §2]to three examples.
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(i) Let G = C3 with generator v, and X = S™ for n > 0, where p denotes
the regular representation. We have seen before [HHR] 3.6] that it has a reduced

cellular chain complex C with

Z[Gl/(y—=1) fori=n
(15) Cl'? =14 Z[G] forn <i<2n
0 otherwise.

Let ¢; denote a generator of C;. The boundary operator d is given by

C fori=n
(16) d(ciy1) = ¢ Yig1-n(c) forn <i<2n
0 otherwise

where v; = 1 — (=1)%y. For future reference, let
6 =1—(-1) = { 0 for i even

2 for i odd.
This chain complex has the form

n n+1 n+2 n+3 2n
O v /Ij Y2 a RE] ﬁ Tn /Ij
Z<> 7 0 y/ 2 zZ 7
(e _a()e sl () (e
Z <Y 7|6 <2 7Z[G] <2 — Z[G] < Z[G
Passing to homology we get
n n+1 n+2 n+3 2n
. 0 . 0 H,,
Z/2 0 Z/2 0 H,,.(G/G)
O 0 0 0 al Jv
0 0 0 0 e ZG]/(vnt1)
where
Z for n even O for n even
,,(G/G) = { 0 for n odd and Hy, { O for n odd

Here O and O are fixed point Mackey functors but e is not.

Similar calculations can be made for S™”2 for n < 0. The results are indicated
in Figure [T}
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. .
—4 . .
. .
. .
_8 .
—16  —-12 -8 4 0 i 8 12 16

FIGURE 1. The (collapsing) Mackey functor slice spectral sequence

for HZ N'\/,,c5 S™"?. The symbols are defined in Table

In other words the RO(G)-graded Mackey functor valued homotopy of HZ is as
follows. For n > —3/2 we have

O for n even and 7 = 2n
e forneven and i =2n —2j with 0 < j < n/2
O for n odd and i =2n
. np2 frd . frng
X" HL =1, HE e fornoddandi=2n+1-2j
with 0 < j < (n+1)/2
0 otherwise

For n < —3/2 we have

K for n even and i = 2n
o fornevenandi=2n+2j—-1
with 0 < j < (=3 —n)/2
for n odd and i = 2n
e for nodd and i = 2n + 2j
with 0 < j < (=3 —n)/2
0 otherwise

X" HZ =1, H

Li—npa =)

We can use Definition [8] to name some elements of these groups.

Note that HZ is a commutative ring spectrum, so there is a commutative mul-
tiplication in w, HZ, making it a commutative Green functor. For such a functor
M on a general group G, the restriction maps are a ring homomorphisms while the
transfer maps satisfy the Frobenius relations .
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8 0 . .
. . .
. . .
. . .
4 . . B B
. . . .
. D . .
. . B .
ol [l I8l ol W] [nl & 157 38l 5 &l 1§ 8l &3 &l G 6
[ [ [
. . .
. .
—4 . .
. .
. .
.
-8 D
-6 —-12 -8 —4 0 4 8 12 16

FIGURE 2. The Mackey functor slice spectral sequence for
Gy Nat ez 22 HZ, for G = Cy and G’ = Cy. The symbols
are for Cy-Mackey functors defined in Table

Then
2-SLICE:
a=a, € mXP”HZ(G/G)=xn_,HZ(G/Q)
r=u, € mXPHZ(G/e)=m,_,HZ(G/e)
with y(z) = —x
4-SLICE:
u=uy, € m¥*HZL(G/G)=m, 5,HZL(G/G)
(17) with Res(u) = 22
NEGATIVE SLICES:
Zn = €2np, € T4, S 22 HZ(G /e)
= M1 HZ(G/e) forn >0
a—iTr(z—Zn—l) ﬂ_471,_2_127(2n+1+i)p2HZ(G/G)

Il m

E(2n+1)(0—1)+ioHZ(G/G)
forn>0andi>0

are the generators of their respective groups. We have relations

2a = 0 Res(a) = 0
/2 for n even and n > 0
2y = a7 Tr(z") = Tr(z_p/2) forn even and n <0
0 for n odd and n > —3.

(ii) Let G = C4 with generator v, G’ = Cy C G, the subgroup generated by 2,
and S(n,G') = G4 oS S™P2. Thus we have

~

C.(S(n,G")) = Z[G] @z CL**

with C"* as in (15]). The calculations of the previous example carry over verbatim
by the exactness of
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The results are indicated in Figure [2] which is obtained from the Figure [I] by
putting a hat over each symbol. We will name elements in the groups shown here
as follows. For an element

o € 18 HL(G'/K) = 18 SV HZ(G'/K),
such as those listed in , we denote the two corresponding elements in
nf(Gy \=VHZ)(G/K) = Z[G)®genf 2 HZ(G'/K)
= xf VHZ(G'/K) & 5y HZ(G'/K)

by @ and (). We have 4?(@) = £a, and there is no canonical choice of a.
When the representation V' of G’ is the restriction of a representation W of G,
then this group is
G
w7 (G ) HZ)(G/K)

When K = G’, the two elements have the same image in
xf(Gy \2VHZ)(G/G) = mi(Gy \2VHZ) = m(SVHZ) = m(2V HZ)(C'/C)

under the transfer, namely the element corresponding to . under the evident iso-
morphisms. Hence if « (or a set of such elements) generates the group LG/EVH (GG,
then t3(Q) (or the corresponding set) generates =& (G, (/;\' YV HZ)(G/G).

(iii) Let G = C4 and X = S™P4. Then the reduced cellular chain complex is

Z fori=n
e _ Z|G/G'] forn<i<2n
g Z[G) for 2n < i < 4n
0 otherwise
with
C; fori=n
Yit1—nC; formn <i<2n
d(ciy1) = ¢ Oiy1-nci for 2n < i < 4n and i even
Yit1-nCi for 2n <4 < 4n and ¢ odd
0 otherwise,
where

0; = 7i(1+9%) = (1= (=1)'"7)(1 +%).
The fixed point Mackey functors for Z = Z[|G/G], Z|G/G'] and Z[G] = Z[G /€],
are O, O and 0. In low dimensions the chain complex of Mackey functors is

n n+1 n+2 n+3

my

a g

In homology this gives
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16 . 9 O 9
. . .
° O o °
D . .
12 D o o o O
LJ Ld
° O [e) 0 [¢)
. D .
8 o O o O o
. . .
0 O o O o O
. . .
4 <) D <) 0 o O
. . .
O o O o O o
. D .
0N mEEEN mEEEN [ O [ O ] O ] O
[¢] o [¢] D ]
. D
o ° [¢) ‘o °
—4 ° °
O o O o
. . .
° o o °
-8 ° °
o O o .
Ld L
[e) 0 °
—12[e . °
o [¢) °
. .
0 o .
—16

-24 -20 -16 -12 -8 —4 0 4 8 12 16 20 24

FicUurRE 3. The Mackey functor slice spectral sequence for
Vyhez X4 HZ. The symbols are defined in Table [l The Mackey
functor at position (4n — s, ) is m,4_,,)_HZ.

In dimensions near 2n we have

2n 2n+1 2n+2 2n+3
Yn ~ Yn+1 = Yn+2 = On+3 = Yn+a
O O O O
€n 2€n 41 €nt2 2€n+3 €nt4
Z Z Z

A( ))\ %+1 A\( ‘)\V %+2 Al ‘;V 7n+3 Aw( ?V ”/n+4
<76/ < 2GS 76 @) < 76 G <

1 )2 al )y al)ealy

Tn Z[G/G/} Yn+1 Z[G] Yn+2 Z[G] n+3 Z[G] Yn+4

The homology is

for n and 7 even and 0 <17 < 2n

for n and 7 odd and 0 <7 < 2n

for n odd and 7 even and 0 < i < 2n
for n even and i = 2n

for n odd and i = 2n

otherwise

ﬂQnJri =

ogmo e e o

Again similar calculations can be made for S™* for n < 0. The results are
indicated in Figure|3| The Mackey functors in filtration 0 (the horizontal axis) are
the ones described in Proposition
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As in (i), we name some of these elements. Let G = Cy and G’ = C3 C G. Recall
that the regular representation py is 1 + o + A where o is the sign representation
and A is the 2-dimensional representation given by a rotation of order 4.

Note that while Figure [T] shows all of 7, HZ for G = Cs, Figure [3| shows only a
bigraded portion of this trigraded Mackey functor for G = C}y, namely the groups
for which the index differs by an integer from a multiple of ps. We will need to
refer to some elements not shown in the latter chart, namely

a, € w_,HZ(G/G) ay € 7w_\HZ(G/G)
uy € m GHZ(G/G)  uy € myoHEG/C)
Ugs € E2—20HZ(G/G)

with 2a)u0, = a2uy and Resj(ugs) = u2; see Definition 8] and Lemma@
We will denote the generator ofﬂg’t(G/H) by Ti—ss; Yt—s,s and z,_s s for H = G,
G’ and e respectively. Then the generators for the groups in the 4-slice are
Yao = up, = usResy(uy) € mX"HZL(G/G) =,y , \HZ(G/G')
with v(z4,0) = —z4p
31 = aouy € myXMHZ(G/G)=my_,_\HZ(G/G)
Y22 = Resy(ar)u, € mY"HZ(G/G') =x,_, \HZ(G/G)
Ti3=0p, =00y € mMEPHZ(G/G)=xn_, \HZ(G/G)
and the ones for the 8-slice are
8,0 = Upriae = Uzp, € TEPHZ(G/G) = mg s, 9\ HZ(G/G)
with y3 o = ys.0 = Resy(2s,0)
Top = W\unt2oe € TEPHZ(G/G) =1y s, 2 HZ(G/G)
with mg’l = 2%¢2
and ys,092,2 = Y6,2 = Resy(26,2)
Tyq = apuz, € mEHZ(G/G) =1y g, s \HZ(G/G)
with y%,z =yg4 = Resg(x4)4)
and 21,3%3,1 = 2T44
Z6,2 = 17%,1 € mYHZ(G/G) =1y, o, HL(G/G).

These elements and their restrictions generate w, >4 HZ for m = 1 and 2. For
m > 2 the groups are generated by products of these elements. There are relations

20, = 0 Res%ag = 0
4ay, = 0 2Res§a>\ = 0 Reszllax = 0

The element
240 = Res?(y;l}o) = Res?(um) e m, XM HZ(G/e)
is invertible with v(y) = —y, 23 = 280 = Res}(zs,0) and
Zo4m,0 = 210 = Cmpy € T_yy > PHZL(G/e) for m > 0.
These elements and their transfers generate the groups in

T YT for m > 0.

—4m
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Theorem 18. Divisibilities in the negative regular slices for Cy. There are
the following infinite divisibilities in the third quadrant of the spectral sequence in
Figure 3,
® r_y0= Tr‘ll(z,zw) is infinitely divisible by x44 and x1,3, meaning that
xi7433]1€7333—4—4j—k,—4j—3k =x_40  forjk=0.
o x_7 1 is infinitely divisible by x44, T6,2 and xg o, meaning that
5551’41%’2:%’86’0‘%77741'76]'78k,71742'72]' =x_7_1 fori,j, k>0,

subject to the relation x?s,z = T8 0T4,4.
® x_10,—2 15 infinitely divisible by x44, T62 and xg o, meaning that

i .0 .k - ..
T44%6 28 0L—10—4i—65—8k,—2—4i—2j = £—10,—2 fori,j,k >0
with
2$—7—4¢—6j—8k,—1—4i—2j = T3,1T-10—4i—65—8k,—2—4i—2j

= X1,3T_-8—-4i—8j—6k,—4—4i—2j
fori,j, k> 0.

® Yy 7 1= Res%(xq,,l) is infinitely divisible by y2 2 and ya 0, meaning that

_— _
Y3 oY 0Y—7-2j—dk,~1-2j = Y—7,-1 for j,k > 0.

5. THE C4-SPECTRUM kg

Before defining our spectrum we need to recall some formulas from [HHR]. Let
G be a finite cyclic 2-group with generator . In [HHR] 5.47] we defined generators

(19) TR =Ty €my2 MU' (Cy/Cy)

(note that this group is a module over G/Cs) and
e = r2Res}(Tx) € ﬂf;mMU((G))(e/e) =% MUUG),
These are defined in terms of the coeflicients
my. € my.2 HZ ) A MUY (Cy/C)

of the logarithm of the formal group associated with the left unit map from MU
to MU(S)), For small k we have

o= (1—7)(m)
Ty = g —2y(m1)(1 =) (M)
Ts = (1 —7)(ms) —y(m) (M7 + 2miy(my) — 3y(ma)? — 2my)
Now let G = C4 and G’ = Cy C G. The generators ?kG are the 7, defined above.

We also have generators FkG/ defined by similar formulas with v replaced by ¥?;

recall that v2(my) = (—1)¥my. Thus we have

1 = 2m1
=G — =2
Ty = Mma+4my

TS = 2y — 2my g — 4T
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If we set 7o = 0 and 73 = 0, we get

o= (L))

= 3y (T) £ ()

¢ = 5(T) + 5Ty (F1)? +(T1)?
(20) AE) = —Ty(m) (59()° - S +75)

S|

(v(71)? 4+ 5717(T1) + 5
= 5P (F1) + 207y (712 — PO (Fy
=207y (T1)* = 571y(71)

Let kg be the G-spectrum obtained from MUU) by killing the 7,s and their
conjugates for n > 2. We will often use a (second) subscript € to indicate the action
of v, so y(x.) = 14 and xoy = ..

Then we have
(21)

wekn = mku(G/e) = Zry, v(r1)] = Z[r1,0, 711 where Y2(r1.¢) = —71..

Here we use 71 and 71 . to denote the images of elements of the same name in the
homotopy of MU,
The Periodicity Theorem [HHRI 9.12] states that inverting a class

De kaH(G/G)
whose image under [%Resg is divisible by Fg’jlofgll (see ) and T1,071,1 makes ug),
a permanent cycle. Let

D = (riRest) ™ (76576175 1(75) ) € m,, hu(G/G)

(see Table [3| for a more explicit description) and Kgg = D 'kg. Then we know
that ¥32 Ky is equivalent to K.

The Slice and Reduction Theorems [HHR] 6.1 and 6.5] imply that the 2kth slice
of kg is the 2kth wedge summand of

HZ ANy | \/ 5%
>0

It follows that over G’ the 2kth slice is a wedge of k + 1 copies of HZ A S*r2.

The group zg ki (G'/e) is not in the image of the group action restriction r3
because p9 is not the restriction of a representation of G. However, 75 kg is refined
(in the sense of [HHR] 5.29]) by a map from

(22) Spa = Gy [y S — s k.

The reduction theorem implies that the 2-slice Piky is S,, A HZ. We know that
m5(S,, ANHZ) =T

We use the symbols 1 and v(r1) to denote the generators of the underlying abelian
group of TO(G/e) = Z[G/G']—. These elements have trivial fixed point transfers and

73(Sp N HZ)(G/G') =0,
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Tables [3] and [4] describe some elements in the low dimensional homotopy of kg,
which we now discuss.

Given an element in 7, MU () we will often use the same symbol to denote its
image in m,kg. For example, in [HHR] 9.1]

(23) 0 € TG 1), MU =z, ) MUD/(G/G)

was defined to be the composite

4
]\/v2 7’2]@71

@ —1)p S R i ' 3 V/§ () p— V/} 5 ({(=))]}

We will use the same symbol to denote its image in z& ku(G/G).
The element € mS° (coming from the Hopf map S® — S2?) has image
a,T1 € El@/ kr(G'/G’"). There are two corresponding elements

ne € ¥ ku(G'/G')  for e=0,1.

We use the same symbol for their preimages under 5. We denote by 7 again
the image of either under the transfer Tré. It is the image of the Hopf map in
mku(G/G), and Resy (1) = 10 + 11

Its cube is killed by a d3 in the slice spectral sequence, as is the sum of any two
monomials of degree 3 in the 7. It follows that in £, each such monomial is equal
to n3. It has a nontrivial transfer, which we denote by 3.

In [HHRI, 5.51] we defined

(24) fr = apN3Ti € ; MU9(G/G)
for a finite cyclic 2-group G. Its slice filtration is k(g — 1) and we conjecture that
(25) TS, (ugResS) () = ag fia.

Somehow this is related to the first slice differential,
ditig)(uze) = a2 fr.
In particular, for G = C4 we have
fi = azax0; with Trj(usResy(z)) = aq fi.
For example
Tra(nmom) = Try(usResy(ardr)) = ap frandy = ff.
The Hopf element v € 735° has image
a,u)01 € m3ku(G/G),

so we also denote the latter by v. It has an exotic restriction 73 (filtration jump
two), which implies that

2v = Try(Resy(v)) = Try(nd) = x3.
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One way to see this is to use the Periodicity Theorem to equate m3ky with m_q9ks,
which can be shown to be the Mackey functor o in slice filtration —32. Another
argument not relying on periodicity is given below in .
The exotic restriction on v implies
Resj(v2) = 1S,

with filtration jump 4.

Theorem 26. The Hurewicz image The elementsn € m1ku(G/G), v € m3ku(G/G),

e € mgku(G/G), k € m,ku(G/G), and B € myoku(G/G) are the images of ele-

ments of the same names in m,S°.

We refer the reader to [Rav86, Table A3.3] for more information about these
elements.

Proof. Suppose we know this for v and ®. Then Af4u is represented by an element
of filtration —3 whose product with v? is nontrivial. This implies that v® has
nontrivial image in mgkp(G/G). This is a nontrivial multiplicative extension in the
first quadrant, but not in the third.

Since v® = ne in 7,8, this implies that 1 and € are both detected and have the
images stated in Table[dl It follows that €& has nontrivial image here. Since k? = ¢&
in 7,5°, k must also be detected. Its only possible image is the one indicated.

Both v and % have images of order 8 in m.tmf and its K(2) localization. The
latter is the homotopy fixed point set of an action of the binary tetrahedral group
(24 acting on Fs. This in turn is a retract of the homotopy fixed point set of
the quaternion group (QJs. A restriction and transfer argument shows that both
elements have order at least 4 in the homotopy fixed point set of Cy C Qs. WE
NEED TO RELATE THIS Cy ACTION TO THE ONE WE ARE STUDYING.

O

6. SLICES FOR kg AND Ky

Let -
Ay = ’U,2p40% - S Eng(G/G)
& = wupRes3(01) € mku(G/GY),
s0 62 = Res3(A;). Hence we have
5= oy Resy(alr )
B uURes;l(u[;Z/Q]uTﬁ’ln) for m odd
Res) (ugz/ Jupom) for m even.

Theorem 27. The slice E,-term for ky. The slices of ki are

v0§m§5/4 Xom,s/2—m for s even and s > 0

ﬁm:{
*

otherwise

where

)

X HZ form=n
K = G, C/;\/ smtme g7 form <n

More details
needed here.
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TABLE 3. Some elements of filtration 0 in the homotopy of and
slice spectral sequence for kyg. Refer to Table [4] for targets of
differentials and transfers.
Element Description
T1e € 15 ku(G'/G') with Images from (19)) defined in [HHR], 5.47]
Ti2=—T10

ri.e € 75 ku(G'/e)

UoaResT(F1c)

T1,e € m$ku(G/e) with
1,2 = —T1,0

Preimages of the above under r3,
generating O = r$ kg /torsion

S,e € 15 ku(G/G)

: =) 1
Preimages of 71 . under r5

0, € x5, ku(G/G) with
ﬂ%ReSé(ﬁl) =T1,0T1,1 and
T (Res) (9,)) = 0

Image from defined in [HHR, 9.1]

EQ S Egk‘H(G/G) with
].:QGSZQl @2) =S20 — S2,1

(—1)“Tr3(52.)

D € m,,,ku(G/G), the periodicity
element

02(=5L, + 20750, + 9092)

Uy € Ty _ ku(G/G') with
~v(uy) = —uy and
Tr3(uy) = ao f1 (exotic transfer).

Isomorphic image of 1 € moku(G/G")

So.c € By ku(G/G') with
D2 = Y0 and dy(a.c) = 12 (no +m)

(_l)eumg?ﬁ
= (—1)5uc,.Res‘21(u>\)§27E

Ty € ES ku(G/G) with
Res%(Tg) = 2270 + 22)1 and
d3(Ty) = n®

Try(32.e) = (—1)urTry(uo52,c)

T, € EY®ku(G/G) with

T§ = M (T3 — 4Ay),

Res%(T;;) = (22’0 - 22’1)(51 and
ds3(Ty) =0

(—1)°Tr3(S2,e01) = useu3lad,

01 € By ku(G/G') with
Y(61) = =b1, Try(81) =0
and dg(01) = nom (no +m)

u,,Resy (1) = u,Resy(uxd;)

A, € Ey%ku(G/G) with
Res;(A1) = 62 and
d5(A1) = VT4

52 _ 252
U2, 07 = U2, UX07

The structure of wlky as a Z[G]-module (see ) leads to four types of orbits
and slices:

(1) {(rior1,1)%} leading to Xopa¢ for £ > 0; see the leftmost diagonal in Fig-
ure On the 0-line we have a copy of O (see Table|1]) generated under
restrictions by

5 N 0,8¢
Af = u2€p40%£ = uéou?\ea%z € £, (G/G).
In positive filtrations we have

o C Egj,se generated by
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TABLE 4. Some elements of positive filtration in the homotopy of
and slice spectral sequence for k.

Element

Description

ne € 7 ku(G'/G') with 2, = 0

aagfl,e

ne € ¥ ku(G/G")

Preimage of the above under r3,
generating the summand @ of 7, kg

fr € mku(G/G)

a,a0;, generating the summand e of
ﬂlkH

n € 7§'ku(G/G) with
Resy(n) = no +m € n¥ku(G/G")

Tr%(ne) + fl

n2, nom € 5 ku(G/G') with
Try(n2) = 1* and
Try(nom ) = f? (exotic transfer)

uyResy(ay )32, and u,Resy(axdy),
generating the torsion @ @ ¥ in zng

o = ngm = non; =3 € 75 ku(G/G)

nquResg(a,\ﬁl) = nquResg(a,\Eg,e)

x3 € m3ku(G/G) with Resy(z3) = 0

Try(n3)

v € m3ku(G/G) with Resy(v) = 73 and
2v = x3 (exotic restriction and group
extension)

a,u)0y, generating o = waky

x4 € By¥(G/Q) with ds(x4) = f3,
Res%(u) = (nom)? = 773 and 2z4 = fiv

2 32
axUos07

V7 € nghn(G/G)

2a\uru2,0; = (2, 1, f1, f7)

¢ € mgkn(G/G)

Represents z2 € E5 ' °(G/G)

V3 =ne € mgku(G/Q)

Represents fiz2 € By °(G/G)

k€ 1y ku(G/C) 2a\u3,u3 07
7 € Tyokn(G/G) a3 u3 Uiy
dus,uy 0 € EY(G/G)  for0<j <20 and

2k 20, 0—kx2¢
Ay Q) Ugy a1

E§k+4£,8€

c E§k+4f78€(G/G)

generated by
for 0 <k </

(2) {(r170r1,1)2”1} leading to Xopy1,2041 for £ > 0; see the leftmost diagonal
in Figure[6l On the 0-line we have a copy of O generated under restrictions
by

(5%“'1:u?fHResg(u,\ﬁl)%H S Eg’SZH(G/G').

In positive filtrations we have

e C Egj’se'M generated by
ugeHResé(ag\u?\“l_jﬁ%“l) e EZ¥Yaq/a) for0<j<20+1,
o C E§j+1’8€+4 generated by
agalub ui IR e EITRSY (GG for0<j3<2(+1 and
o C EIkH+38eHd generated by
aikHaieHug;kﬁ%Hl c E§k+4z+3’8Z+4(G/G) for0O<k </
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(3) {r{yor%ffi,r%ﬁ)_iril} leading to X, 2¢—; for 0 < i < {; see other diagonals

in Figure @ On the 0-line we have a copy of & generated (under Tr;l, Res?
and the group action) by

ubsy Resy(uldl) € E9*(G/G)
In positive filtrations we have
s C EY Al generated by
Cl—imy A G b—ji
uySy 'Resy(ajyuy'0y)
e EY*™@G)E)  for0<j<t
= Pl Res (ul70h) for0<j</{—i.
(4) {rioriefrlfi,rfﬁfl*iri’l} leading to X;o041—i for 0 < i < £; see other
diagonals in Figure @ On the 0-line we have a copy ofﬁ generated (under
transfers and the group action) by

r1oRes? (uys5 ")Rest(uid}) € Ey**(G/e)
In positive filtrations we have

e C EuLate

generated by
neul 55 Ress(alu’ 70
e EITH2@QIENY for0<j<{
= P HlIE T T Resy(ul 90l for0<j <0 —i.
Corollary 28. A subring of the slice Fx-term. The ring E.kua(G/G') is (see
Tables @ and

Z[61,52,.e,me: € =0, 1]/ (20,67 — T2,082,1, NeXo,e41 + N14601) -
In particular the elements ny and 11 are algebraically independent mod 2 with
Y0') € T n X (G/G')  form <n.
The element (non1)? is the fized point restriction of
us0a30} € By ku(G/G),

which has order 4, and the transfer of the former is twice the latter. The element
Mo 1S not in the image of Resg and has trivial transfer in E,.

Proof. We detect this subring with the monomorphism

Bku(GG') — = Byhua (/)
Neb—————> GoT1,
Yo b——m— ug(ﬁiE

0 ————— U26T1,071,1,

in which all the relations are transparent. O
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Corollary 29. Slices for Ky. The slices of kg are

Plky = \/m§s/4 Xons/2-m for s 6?.1671 and s >0
* otherwise

where X, », is as in Theorem , Here m can be any integer, and we still require
that m <mn.

Proof. Recall that Ky is obtained from kg by inverting a certain element D €
T4p, k1 described in Table [3l Thus Ky is the homotopy colimit of the diagram

D D D
kg ——— Zi4p4kH _— 27894]@1_1 = o ...

Desuspending by 4p4 converts slices to slices, so for even s we have

s _ : —4kps ps+16k
PKg = thIEOE Ps+16kkH
: —4k
= klig)lo )Y pa \/ Xm,s/2+8k:7m
0<m<s/4+8k
= [Jim V  Xoaks2ran—m
oo
0<m<s/4+4k
= kli)m \/ Xm,s/Z—m
00
—4k<m<s/4

= \/ Xm,‘9/2—m~ 0

m<s/4

7. GENERALITIES ON DIFFERENTIALS

Now we turn to differentials. Our starting point is the Slice Differentials Theorem
of [HHR], 9.9], which says that in the slice spectral sequence for MU() for an
arbitrary finite cyclic 2-group G of order g, the first nontrivial differential on various
powers of us, is

2k—1

(30) A (w2 ) = a2ka%k_1N29(F§€_l) c E:’”Qk(l*“)*lMU((G))(G/G),

g

where r = 1 + (2¥ — 1)g and p is the reduced regular representation of G. In
particular

d3(uge) = a37 € Ey'"*MUr(G/G) for G = Cy
(31) ds(uze) = alaxd, € EY°"*MUG)(G/G) for G=C,
dr(ud,) = alFs € EYTYMUR(G/G)  for G = Cy.

Now, as before, let G = C4 and G’ = Cy C G. We need to translate the d3 above
in the slice spectral sequence for MUg into a statement about the one for kgy. We
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have an equivariant multiplication map m of G’-spectra

MUUG)
l

i MUgr A MUg m MUg

MUr

el ~G | =G
T > T+ > T]

ad(FFy+7¢) ———a

5?G =G (fG =G )

7§ & a LG
Jr(71,1)3 mod (73, 73)

T3 '—>< )'—>T3G

where the elements lie in gg(-)(G'/G'). In the slice spectral sequence for MU())
d3(uzy) and dr(u3,) must be G-invariant since us, is, and they must map respec-

tively to a37$" and 7§, so we have
ds(uze,) = ag, (?'1;:0 + ??:1) = aZ,(no+m)
dr(u3y,) = af, (57E0rSa (T + 750 + (F)° + )
= al (FF)*+ - since a3, (7o +7¢,) =0in E,

and similarly for kg where the missing terms in dr(u3,,) vanish. Pulling back along
the isomorphism r3 and the monomorphism Resé leads to the following.

Proposition 32. The differentials on u) and wus,. The following differentials
occur in the slice spectral sequence for kg.

d3(uy) = axn
ds(Resi(uy)) = Rest(ax)(no +m)
ds(usResy(uy)) = wusResy(ax)(no +m) = ném + non?
ds(urn) = a)\nQ = ag\Tr%(“tnge)
ds(Resy(ux)ne) Res (@) (10 + 1) e
ds(ugResy(ur)ne) = usRess(ax)(no + n1)ne
= (mom)* + momn?
ds(uze) = aaxd,
d5(u3) = a3a,u\dy = ayuyfi
d7(Resj(un)?) = Resy(a3)m.

The elements u,, u3, and Resy(ux)? are permanent cycles. The first satisfies
Trj(usResy () = ap frz € 1410k (G/G).

Since the slice filtrations of uUResg(a:) and its transfer exceed those of x by 0 and
4 respectively, we have an exotic Mackey functor extension.

Proof. The differentials were established above.

Note that u, € ES' 7 (G/G’) since the maximal subgroup for which the sign
representation o is oriented is G’, on which it is restricts to the trivial representation
of degree 1. This group depends only on the restriction of the RO(G)-grading to
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G’, and the isomorphism extends to differentials as well. This means that u, is a
place holder corresponding to the permanent cycle 1 € ES°(G/G).

As remarked above, we lose no information by inverting the class D, which is
divisible by ;. It is shown in [HHR] 9.11] that inverting the latter makes u3, a
permanent cycle. O

8. kg AS A C5-SPECTRUM
It is helpful to explore the restriction of the slice spectral sequence to G’, for
which the Z-brigraded portion E,(G’/G’) is the isomorphic image of the ring of
Corollary 28] In the following we identify Y5, d; and 7y with their images under

r3. From the differentials of (31)) we get

d3(Ba.e) = 02+ 0l
d3(61) = mgm +nons
d7(5%) = d7(“%a)ﬁ,oﬁ,1 = QZFL?,G ﬁ,oﬁ@

= al(571y(T1) + 5710771 +Y(T1)*)P5 o1 4.

The dss above make all monomials in 79 and 7; of any given degree > 3 the same
in £,(G/G") and E,(G'/G"), so d7(67) = ng. Similar calculations show that

d7(23,e) = 775
This leads to the following, for which Figure [d]is a visual aid.

Theorem 33. The slice spectral sequence for kg as a Cy-spectrum. Using
the notation of Table[d and Definition |4, we have

Ey*(G'Je) = Zrip,7r1.1] with 11 ¢ € Eg’Q(G'/e)
Ey (GG = Z[61,%¢,m:€=0,1]/
(2775,5% — Y2032, NeX2,e41 + 771+e51) )

50
oe@,0 for (s,t) = (0,40) with £ >0
D1 u} for (s,t) = (0,44 + 2) with £ >0
Eyf={ o D.e® for (s,t) = (2u, 40 + 4du) with £ >0 and u >0
Duic® for (s,t) = (2u — 1,40 + 4u — 2) with £ > 0 and u > 0
0 otherwise.

The first differentials are determined by

d3(Xa,) = n2 (1o +m) and d3(61) = noni(no +n1)
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resulting in

r(s,t 0,44) with £ > 0 and ¢ even

0,4¢) with £ > 0 and ¢ odd

oo d,O
Ko PN for st

or (s,t) = (
(s,t) = (
@ZJAE for (s,t) = (0,40 4 2) with £ >0
(s,8) = (2
(s,8) = (
(

Eyt = e P, o for (st ,40 + 4) with £ > 0 even
D0 for (s,t 1,4¢ + 2) with £ > 0 even
. for (s,t) = (s,4¢ + 2s) with s > 3 and £ > 0 even
0 otherwise.

There is a second set of differentials determined by

d7(Sa.c) = d7(61) = 0§

resulting in

s,t
Ey

=E%' = D for (s,t) =

oDed,0
Ne@, 0 for(s,t)=
No@,N  for (s,t) =
@D, O for

( 0,4¢) with £ > 0 and ¢ divisible by 4
(
(
(
P @1_%? for (s,t) =
(
(
(
(

0,4¢) with £ > 0 and ¢ =2 mod 4
0,4¢) with £ > 0 and ¢ odd
0,40+ 2) with £ >0
, 40+ 4) with £ > 0 divisible by 4
2,40+ 4) with £ > 0 and £ =2 mod /
D for (s,t) = (1,40 + 2) with £ > 0 divisble by 4
e, for (s,t) = (1,40 + 2) with £ > 0 and £ = 2 mod 4
. for (s,t) = (s,40+2s) with3 < s <6 and £ >0
divisible by 4

= (
(
(
= (
(2
(
(
(

0 otherwise.

Corollary 34. Some nontrivial permanent cycles. The following elements in
Ey¥ % ky(G/G') and their transfers are nontrivial permanent cycles:

E;f:j(?{ for 0 < j < 2i (4i+ 1 elements of infinite order including 62°), i
even and s = 0.
77623?36{ for 0 < j < 2i and 063 (4i + 2 elements or order 2) for i even
and s = 1.
T]SE;ZZJ(S{ Jor 0 < j < 2i and 63 {ng, nomw, n?} (4i+ 3 elements or order
2) for i even and s = 2.

n5o%t for 3 <s <6 (4 elements or order 2) and i even.

. Zgz I67 462 for 0 < j < 2i (4 + 1 elements of infinite order including

25%) i odd and s = 0.

neng;jéf—i—é%i for0<j<2i—1andnoét (D1 +01) = mds (T, 0+61)
(41 + 1 elements of order 2), i odd and s = 1.

77323?;]5{ 52i for0<j<2i—1, 7705%i_1(22,1 —|—51) = 7707715?._1(22704—51)
and non167 1 (Zaq +01) = 7207 (Za0 + 61) (4i + 2 elements of order 2)
for i odd and s = 2.
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12 130 150
12 \ 14e
10 1o \ \ 130
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ola| l2a| |30 |4a| |50/ lem| |70| |sm| |oo
0 i 8 B 6

FIGURE 4. The slice spectral sequence for kg as a Co-spectrum.
The Mackey functor symbols are as in Table [2 The Cy-structure
of the Mackey functors is not indicated here. In each bidegree we
have a direct sum of the indicated number of the indicated Mackey
functor. Each d3 has maximal rank, leaving a cokernel of rank 1,
and each d7 has rank 1. Blue lines indicate exotic transfers, which
also have maximal rank.

In EY* ™k (G/G") we have Qng:I_j(S{ for 0 < j < 2i and 267, 4i+3 elements

of infinite order, each in the image of the transfer Tr3.

9. THE FIRST DIFFERENTIALS OVER C4

Theorem [27] lists elements in the slice spectral sequence for kg over Cy in terms
of

1, 527 017 1, Qg QX3 Uy, Ug, and U2q-

All but the w’s are permanent cycles, and the action of d3 on uy, u, and ug, is
described above in Proposition

Proposition 35. d3 on elements in Theorem We have the following dss,
subject to the conditions on i, j, k and £ of Theorem |27
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o On Xgpop:
1 20—j—1
ag\+ 77U2au>\ 7- 02[
‘ 20y _ ELXze,zzH(G/G)
d (QJAU’QJU)\ jb ) - fOTj odd
0 for j even
dz(aZ a3 us¥0%) = 0
o On Xopt1,2041°
d3 (63T = nuETResy(ayu3o )

€ 1, Xory1,2042(G/G)
ds (ug ™ Resj (afud T VoY)
s )
S E*X2£+1,2£+2(G/G')
for j even
0 for 7 odd

1 20—75
nagal 2yl I

20 2e+17j524+1) _ €, Xory1,2042(G/G)
1 for j even
0 for 7 odd

d3(aaa)\u

2k+1 20+1 (—kx2(+1
ds(a2F e ug ottt 0

o On X0 i:

1S Resh (w104
€ E*XZ,21€+177,‘(G/G/)

for £ odd
0 for £ even

P Reslayat 1)
it~ Resh(ul D] _ €, Xio41-i(G/G")

d (77 u ReSZ( D1)) foré—j odd

0 for £ — j even

ds(ul 35 Resy(usdl)) =

e On Xi,2£+17i5

ds(r1Res?(u’ 55 )Rest(usdl)) = 0
P R
bl f—jab—i—jy Ay L—jxi _ €, Xionyo-i(G/G")
d3(77 uU 82 ReSZ(u)\ Dl)) forffj Odd
0 for £ — j even

Note that in each case the first index of X is unchanged by the differential, and
the second one is increased by one. Since X,, ,, is a summand of the 2(m + n)th
slice, each d3 raises the slice degree by 2 as expected.
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FIGURE 5. The dss on the slice summands X4, for n > 4. The
symbols are defined in Table

16 ) ° ° ° ° ° )
0 ° ° ° ° ° ° °
14 ° ° ° ° ° ° °
. ° ° ° ° ° ° °
12 o "\ ° o ° o ° o °
o [0 ° ° ° ° ° ° °
10 ° ° ° ° ° ° ) )
°\ @ [) [} [) [} [ ) [}
8 ° ° . ° ) ° ° °
o [o Yy ° ° ° ° °
6 ° ° ° ° ° ° °
o)\ [@ ° ° ° ° °
4 ° o\ ° o N ° o °
o [0 ° ° ° ° °
2 ° ° ° ° ) )
o\ (o o ° o °
0 DO 0O ORO RO

=
0 4 8 12 16 20 24 28 32 36 40

FIGURE 6. The dss on the slice summands X5, for n > 5.

These differentials are illustrated in Figures 5] and [6} In order to pass to E, we
need the following exact sequences of Mackey functors.

ds

0 . ° s . 0
0 S 5% .4 0

0 e v 0
0 S g% .% v 0

The resulting subquotients of E, are shown in Figures [7| and |8 and described
below in Theorem In the latter the slice summands are organized as shown in
the Figures rather than by orbit type as in Theorem

Theorem 36. The slice E,-term for ky. The elements of Theorem SUTVIVINg
to E,, which live in the appropriate subquotients of w, Xy, n, are as follows.
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FicUrRE 7. The subquotient of the slice E,-term for kg for the
slice summands X4, for n > 4. Exotic transfers are shown in
blue.
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14
[ J
12
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8
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6 O
[ ]
4
o |V
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) ol ol
0 N5 00 8E 008G 0

0 4 8 12 16 20 24 28 32 36 40

FIGURE 8. The subquotient of the slice E -term for kg for the
slice summands X5 ,, for n > 5. Exotic restrictions and transfers
are shown in green and blue respectively.

In m,Xoe20 (see the leftmost diagonal in Figure [)]), on the 0-line we still
have a copy of O generated under fized point restrictions by A% € Eﬁ’“. In
positive filtrations we have

° < Eij’w generated by
aiugguihjﬁff € EZJ,SE(G/G) for j even and 0 < j < 2¢,
2adub w3 I0¥ = a2al T tubtrudt I
€ Eiyysé(G/G) for j odd and 0 < j < 20 and
* < E?H%’SK generated by
SR ¢ BFTRSNGIG) for0 <k <L
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(2) Inmw,Xop 2041 (see the second leftmost diagonal in Figure @, in filtration 0
we have O, generated (under transfers and the group action) by
r1Res? (u2Rest (u30%) € BS* (G e).
In positive filtrations we have

o C Ei’sgw generated (under transfers and
the group action) by
nu2Res (uyd))? = EI’SHQ(G/G')
o C E4}Hl 8t+2 for 0 < k < ¢ generated by
o = 2 2R R (139, )22k
e EYFTAG/GN with (1 — )z = Tri(z) = 0.

(3) In w,Xop1120+1 (see the leftmost diagonal in Figure @, on the 0-line we

have a copy of N generated under fized point Agzul)/z € EZ’SZM

filtrations we have

. In positive

e C EQj’séH generated by

w2t i 2041—jx2041

2 Resy (afuy T I0)
e EZ¥TYG/GY  for0<j<2+1,
o C E§j+1’8£+4 generated by
aga)\u%u?\ﬂlfjﬁ?“l € E§j+2k’8£+4(G/G) for0<j<2(+1 and
o C E2k+4e+3’8€+4 generated by
2k+1 ?\e+1ugakozz+1 c E§k+4e+2,8z+4(G/G) for0 <k <20+1.

(4) Inm,Xop11 2042 (see the second leftmost diagonal in Figure @, in filtration
0 we have O, generated (under transfers and the group action) by

r1Res? (u2 Rest (u 2“15%“1) EEQ"SH(&(G/e).
In positive filtrations we have
v C E24k+3,813+6 for0<k<t
generated under transfer by
x=nBACE e BIFPSS (G an) with (1 —~)xz = 0.

(5) In , X m+i fori>2 (see the rest of Figures@ and @), in filtration 0 we
have

C  EY"™YT2 generated under transfers

an

and group action by
r1Res? (u 98 Rest (ul 7o)
€ EYMTNTA(Gle) forj>0
N C E2’8é+4 generated under transfers

and group action by

Resf (u?,”l?geﬂ_m)Res‘ll( 22“0"’)
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e EYHG/e) fort>m)2

g C Ez,se generated under transfers and restriction
and group action by
Tsem = S o7+ 07

where ¥g ¢ = up,52,c and §; = uPZResg(ﬁl)
e EYG/G) for0<m<20—1.
In positive filtrations we have
o C Ei’8[+4 generated under transfers

and group action by

mpResy (A7) = 507" = njuy Resy (uxd1)*
e EYMNG/G) and
o C EZ’M"'QS generated under transfers

and group action by
Nrsem € EPSTR(G/G) fors=1,2and 0 <m < 20— 1.

Proposition 37. Some nontrivial permanent cycles. The elements listed in
Theorem (5) other than 262 are all nontrivial permanent cycles.

Proof. Each such element is either in the image of E*(G/e) under the transfer
and therefore a nontrivial permanent cyle, or it is one of the ones listed in Corollary

B34 O

In subsequent discussions and charts, starting with Figure we will omit the
elements Proposition [377

Analogous statements can be made about the slice spectral sequence for K.
Each of its slices is a certain infinite wedge spelled out in Corollary Their
homotopy groups are determined by the chain complex calculations of Section
and illustrated in Figures 2] and [3] Analogs of Figures are shown in Figures
In each figure, exotic transfers and restrictions are indicated by blue and
green lines respsctively. As in the kg case, most of the elements shown in this
chart can be ignored for the purpose of calculating higher differentials.

The resulting reduced E, for Ky is shown in Figure The information shown
there is very useful for computing differentials and extensions. The periodicity
theorem tells us that 7w, Ky and 7,45 Ky are isomorphic. For 0 < n < 32 these
groups appear in the first and third quadrants respectively, and the information
visible in the spectral sequence can be quite different.

For example, we see that myKp = O while m_4, K has a subgroup isomorphic
to K. The quotient 0O/K is isomorphic to o. This leads to the exotic restrictions and
transfer in dimension —32 shown in Figure Information that is transparent in
dimension 0 implies subtle information in dimension —32. Conversely, we see easily
that =_,Kg = 0O while mog Ky has a quotient isomorphic to N. This leads to the
“long transfer” in dimension 28.
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FIGURE 9. The dss on the slices X_4 ,, for n > —4.
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FIGURE 10. The dss on the slices X_5 ,, for n > —5.
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FIGURE 11. The subquotient of the slice £,-term for kg for the
slice summands X_4 ,, for n > —4.
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FIGURE 12. The subquotient of the slice E,-term for kg for the
slice summands X_5 ,, for n > —5.

This technique will be used repeatedly in the proof of Theorem [40] below.
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10. HIGHER DIFFERENTIALS AND EXOTIC MACKEY FUNCTOR EXTENSIONS

Theorem 38. The dss, drs and dyis in the slice spectral sequence for ky.
The E,-term of the slice spectral sequence for ku with elements of Proposition
removed (shown in Figure we have

Ne € E}l’Q(G/G’) for e = 0,1 with Tr%(ne) =ne E}f(G/G)
fi e EYNG/G)
S Qi YG/G")  with Tx3(n?) =n? and Tr3(nom) = f?
s =ngm = non? =

€ E;°(G/G) with Trs(f) = 23 € E{*(G/G) and n* =0
v € EXG/G) with Resi(v) =3, 2v = x5 and Res(v2) =
T4 € Eﬁ’ (G/G)  with Resj(z4) = na

e EYNG/G)  with Tri(ys) =0
Ay e EYY(G/G);

see Tables[3 and[]] for more information. All are torsion free under multiplication
by x4 or its restriction né, except

no+n, M2+ nom,  ya o and 44,
which are killed by it. Thus the following are linearly independent up to 2-torsion:
{xfi {xg, A{, flA{, VA{, V2A{, f+2: j=>0¢p:0> O}
U{n {no, m} i >0}
U {RebQ {y4, Ne, 7762} 1> O}.
There are multiplicative relations
fiv = 2wy, Vxy = fiA, VP =0 and yum. = 0.

There are differentials

ds(@i ) = @3 forij 20
s (A2 1]y — AQZinH A%, 2, f1)
ds(HAT™ ) = 2AY]
d(20%+15]) =AYy xi“
dr(AY 2]y = AL It
d11(A4Z+1$ 37421]) = Adif2? 2j+2

Similar statements can be made about the third quadrant of the slice spectral
sequence for Ku. They are indicated in Figure[T]}

Proof. The structure of the reduced (meaning the elements of Proposition are
removed) F,-term can be read off from previous calculations.

We have
2ry = 243U, 03
= G9,a)\UND} since aZuy = 2a\uz,
ds(zs) = a307ds(uz0)

a3diadaxd, by Proposition [32]
= f
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ds(A1) = ds(u3)uge0? + u3ds(uge )03
= a)uyfiug, 01 + adayuids
= axuxfiuge 07 + 2a,a3u\U2, 05 since a2uy = 2a\uz,
= ayuyfiuge0]
= vas= (v, f}, 1)
ds(f1A1) = axuxfiu,07

2 3 4
= aja\UuxU2507

since 2a, =0

= 223
d7(201) = dr(Try(Resy(As))) = Try(d7(67))
= Tr3(ng) by Theorem
In order to evaluate this transfer note that 73 = Res (14
Try(15) = Tra(moResy(24)) = Try (15)za = w34

and d7(2A1) = I3T4.
Since Resy (A1) = 67, we have

), 50

Resy(vzy) = Resy(v)ng

= Resy(ds(A1))
= d,(Resj(A1)) for suitable r
= d,(6})
= ng forr="17.

It follows that
1o (Resy (v) —ng) = 0.

Since multiplication by nd maps E3°(G/G’) isomorphically to ET'*(G/G"), we

conclude that
(39) Res;(v) = ¢,

which implies that 2v = z3 and Res%(zﬁ) = 778.
Now consider the differential on A%. For suitable r we have

d.(A?) 2A1d5(Ay)
= 2A1U1‘4
= A1x3x4
SO d7(A%) = A1$33}4.
Heuristically we have
d(A2zy) = d(AY)xy + A2d(xy)

A11103953 + A%fig)

Arzsai + Ay fi(AfT)
Aqz3r? + Ay fi(Vixy)
= Alxgxi + A1 (fiv)vaey
= All'giﬂi + Aq1(2z4)vay

41

Is this rigorous
enough?



42 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

= 2A1x3xi
0.
For the di; we have
dr(Arzz) = dp(Try(Resy(Av)))
— Trd(Resh(ds(Arv)))
= Tra(Resi(vx4))
= Tr2 771)
Try (nom Res («7))
= Tl"z 770771)334
= fia}

All other dss and drs are formal consequences of the above. O

/\/\/\/\

Theorem 40. Higher differentials and Mackey functor extensions in the
slice spectral sequence for kyg. In addition to the differentials and Mackey
functor extensions of Theorem |38 we have

in dimension 9: Tr4(<58“r2 (mo+m)) = f[ATz]

in dimension 13: Try (05 203a%) = fl_A%ixiH_

in dimension 17: Resz(flA‘“+2 2y = ST

in dimension 17: dis(fLABFT13y = Adig2itd

in dimension 18: d13( ATy 2J) = flxiA%iz?ﬂ
in dimension 21: (68”'4 Sal) = flA‘fiHlxiH
in dimension 22: Tr2(7] ST = fRrg AT

in dimension 28: Try(0%7F7) = Z3ALH?

in dimension 38: dy3(v 2A4‘+3 2J) flA‘fi+2xij+3

where i,j > 0 and the indicated dimension is the one where the phenomenon first
occurs, namely the one for i = j = 0.

A} is a permanent cycle and there are no other differentials or exotic Mackey
functor extensions.

Proof. In dimensions 8 and 9 we have exact sequences

ds
E§’12 Eg,u Eg,w EE;JG 0
0 ° o A
and
d
0 E‘S 12 El 10 7 E§,16 ES 16 0
A 0 A °

From Figure |14 we see that m_o3Kp = o, so the same must be true of mgKg. This
implies the exotic transfer.

In dimension 13 the exotic transfer is required to give a differential leading to
TigKu =7m_19Ku = 0.
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The two statements in dimension 17 are equivalent since
dr(03n3) = Resy ().

The target of the long differential is the square of € € mwgKu(G/G), which has
filtration 8. The corresponding element in m_o, has filtration —4, so its product
with ¢ would have filtration 4 and is therefore 0. Hence €? must be hit by a
differential, and this dy3 is the only possibility.

The element 24A?% in dimension 20 is the image of & € m0S?. It product with
the exotic transfer in dimension 2 gives the one in dimension 22.

The Periodicity Theorem of [HHR] 9.16] says that A} is a permanent cycle
inducing an isomorphism in homotopy. The absence of higher differentials and
extensions can be established by careful inspection illustrated in Corollary

Some of the other statements can be proved by comparison with third quadrant
calculations in the slice spectral sequence for Ky which we have not described yet,
but which is illustrated in Figure [T4]

In dimension 9, we find that m_y3 Kgy = E(;l’f
value.

In dimension 13 the indicated exotic transfer is need to get a torsion free m,.
In the dimension —20 we need a di3 to achieve the same result. 77777

2 — o, 50 my must have the same

O

Proofs needed
for the rest
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FI1GURE 14. The reduced E -term of the slice spectral sequence for the periodic spectrum K. Differentials are shown
in red. Exotic transfers and restrictions are shown in blue and green respectively.
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FIGURE 15. The reduced E_ -term of the slice spectral sequence for Kg. The exotic Mackey functor extensions lead
to the Mackey functors shown in blue in the second and fourth quadrants.

Corollary 41. The E_-term of the slice spectral sequence for Ky. The surviving elements in the spectral sequence for K
are shown in Figure 15.

AHOIHL-M TVHY 40 DOTVYNV O THL Y04 HONANOHAS TVHLOHAIS dDITS HHL

514
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FIGURE 16. The 2008 poster. The first and third quadrants show
E,(G/G) with the elements of Prop. excluded. The second
quadrant indicates dss as in Figures[5]and [f} The fourth quadrant
indicates comparable dss in the third quadrant of the slice spectral

sequence.
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