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The purpose of this paper is to describe the slice spectral sequence of a 32-
periodic C4-spectrum KH (to be defined in §5) related to the C4 norm MU ((C4)) =
N4

2MUR of the real cobordism spectrum MUR. Part of this spectral sequence is
illustrated in an unpublished poster produced in late 2008 and shown at the end of
this paper. It shows the spectral sequence convering to the homotopy of the fixed
point spectrum KC4

H . Here we will describe the corresponding spectral sequence of
Mackey functors converging to the graded Mackey functor π∗KH. The C8 analog
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of KH is 256-periodic and detects the Kervaire invariant classes θj . The C2 analog
is the real K-theory spectrum KR.

We will rely extensively on the results, methods and terminology of [HHR].

1. General nonsense about equivariant stable homotopy theory

We first discuss some structure on the homotopy groups of a G-spectrum X. For
each representation V we get a Mackey functor πG

V X = πG
0 Σ

−V X; we will often
suppress G from the notation when it is clear from the context. Its components
are the ordinary homotopy groups of various fixed point sets. In [HHR, 2.2.5] the
group

πG
k X(G/H) = πk(X

H)

(for an integer k) is denoted by πH
k X = [Sk, X]H . Here Sk has the trivial group

action, so an H-equivariant map to X must land in the fixed point spectrum XH .
Thus

πH
k X = πk(X

H),

the ordinary kth homotopy group of the ordinary spectrum XH . Since the Weyl
group of H acts on XH , this group is a module over it.

For a representation V of G, the group

πG
V X(G/H) = πH

V X = [SV , X]H

is isomorphic to
[S0, S−V ∧X]H = π0(S

−V ∧X)H .

However fixed points do not respect smash products, so we cannot equate this group
with

π0(S
−V H

∧XH) = [SV H

, XH ] = π|V H |X
H = πG

|V H |X(G/H).

Conversely a G-equivariant map SV → X represents an element in

[SV , X]G = πG
V X = πG

V X(G/G).

For K ⊆ H ⊆ G we have maps

πG
V X(G/H)

ResHK

11 π
G
V X(G/K)

TrHKqq

π0(Σ
−V X)H π0(Σ

−V X)K

which we call the fixed point restriction and transfer maps. When X is a ring
spectrum, we have the fixed point Frobenius relation

(1) TrHK(ResHK(a)b) = aTrHK(b) for a ∈ π?X(G/H) and b ∈ π?X(G/K).

In particular this means that

(2) aTrHK(b) = 0 when ResHK(a) = 0.

We can also regard X as an H-spectrum for any subgroup H of G; we will not
make a notational distinction between these two structures on X. As such it has
an RO(H)-graded Mackey functor over H of homotopy groups. For simplicity we
assume now that G is abelian. Recall that for a Mackey functor M over H, the
abelian group M(H/K) (for a subgroup K of H) is a module over Z[H/K]. For
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the RO(H)-graded abelian group πH
? X(H/K) for a G-spectrum X, this module

structure extends to one over Z[G/K].
We will define maps relating these Mackey functors over the various subgroups

and call them group action restriction and transfer maps, denoted by rHK and tHK .
The map rGH is induced by the forgetful functor from G-spectra to H-spectra de-
noted in [HHR, 2.2.4] by i∗H ; for trivial H it is denoted by i∗0.

Given a representation V of G restricting to W on H ⊆ G and a G-spectrum X,
we have maps of G-spectra

(3) SV
pinch //

(G/H)+ ∧ SV

fold
oo

∼= // G+ ∧
H
SW =: SW

Since for each subgroup L ⊆ H,

πH
WX(H/L) = πH

0 F (SW , X)(H/L)

= πG
0 F (SW , X)(G/L)

= πG
0 F ((G/H)+ ∧ SV , X)(G/L),

the pinch and fold maps induce

πG
V X

rGH

11 πH
WX

tGH
qq

πG
V X(G/L) πH

WX(H/L)

tGH(H/L)
qq

πG
V X(G/K)

rGH(G/K)

00 π
H
WX(H/H ∩K)

where the X on the right is the restriction of the X on the left to an H-spectrum,
K ⊆ G and L ⊆ H. We can conjugate elements on the right by elements of G with
the subgroup H acting trivially.

The group action transfer nominally depends on the choice of V that restricts
to W , but two such choices V and V ′ lead to canonically isomorphic groups. For
L ⊆ H ⊆ G we have a diagram

πG
V X(G/L)

πH
WX(H/L)

tGH(H/L)kk

tGH(H/L)ss
πG
V ′X(G/L)

The groups on the left are isomorphic because they depend only on the restrictions
of V or V ′ to L. By assumption they have the same restrictions to H.

2. The RO(G)-graded homotopy of HZ

We describe part of the RO(G)-graded Green functor π?(HZ), where HZ is the
integer Eilenberg-Mac Lane spectrum HZ in the G-equivariant category, for some



4 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

cyclic 2-groups G. For each actual (as opposed to virtual) G-representation V we
have an equivariant reduced cellular chain complex CV

∗ for the space SV . It is a
complex of Z[G]-modules with H∗(C

V ) = H∗(S
|V |).

One can convert such a chain complex CV
∗ of Z[G]-modules to one of Mackey

functors as follows. Given a Z[G]-module M , we get a Mackey functor M defined
by

(4) M(G/H) = MH for each subgroup H ⊆ G.

We call this a fixed point Mackey functor. When M is a permutation module,
meaning the free abelian group on a G-set B, we call M a permutation Mackey
functor [HHR, 2.45]. Given a finite G-CW spectrum X, meaning one built out of
cells of the form G+ ∧

H
en, we get a reduced cellular chain complex of Z[G]-modules

C∗X, leading to a chain complex of fixed point Mackey functors C∗X. Its homology
is a graded Mackey functor H∗X with

H∗X(G/H) = π∗(X ∧HZ)(G/H) = π∗(X ∧HZ)H .

In particular H∗X(G/e) = H∗X, the underlying homology of X. In general
H∗X(G/H) is not the same as H∗(X

H) because fixed points do not commute
with smash products. We will see an illustration of this below in Example 5, where
we will also see that H∗X need not be a graded fixed point Mackey functor.

For a finite cyclic 2-group G = C2k , the irreducible representations are the
2-dimensional ones λ(m) corresponding to rotation through an angle of 2πm/2k for
0 < m < 2k−1, the sign representation σ and the trivial one of degree one, which
we denote by 1. The 2-local homotopy type of Sλ(m) depends only on the 2-adic
valuation of m, so we will only consider λ(2j) for 0 ≤ j ≤ k−2. The planar rotation
λ(2k−1) though angle π is the same representation as 2σ.

We will describe the chain complex CV for

V = a+ bσ +
∑

2≤j≤k

cjλ(2
k−j).

for nonnegative integers a, b and cj . The isotropy group of V (the largest subgroup
fixing all of V ) is

GV =

 C2k = G for b = c2 = · · · = ck = 0
C2k−1 =: G′ for b > 0 and c2 = · · · = ck = 0
C2k−` for c` > 0 and c1+` = · · · = ck = 0

The sphere SV has a G-CW structure with reduced cellular chain complex CV

of the form

CV
n =


Z for n = d0
Z[G/G′] for d0 < n ≤ d1
Z[G/C2k−j ] for dj−1 < n ≤ dj and 2 ≤ j ≤ `
0 otherwise.

where

dj =

 a for j = 0
a+ b for j = 1
a+ b+ 2c2 + · · ·+ 2cj for 2 ≤ j ≤ `,

so d` = |V |.
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The boundary map ∂n : CV
n → CV

n−1 is determined by the fact thatH∗(C
V ) = H∗(S

|V |).
More explicitly, let γ be a generator of G and

θj =
∑

0≤t<2j

γt for 1 ≤ j ≤ k.

Then we have

∂n =


∇ for n = 1 + d0
(1− γ)xn for n− d0 even and 2 + d0 ≤ n ≤ dn
xn for n− d0 odd 2 + d0 ≤ n ≤ dn
0 otherwise,

where ∇ is the fold map sending γ 7→ 1. We will use the same symbol below for
the quotient map Z[G/H] → Z[G/K] for H ⊆ K ⊆ G. The elements xn ∈ Z[G] for
2 + d0 ≤ n ≤ |V | are determined recursively by x2+d0

= 1 and

xnxn−1 = θj for 2 + dj−1 < n ≤ 2 + dj .

It follows that H|V |C
V = Z generated by either x1+|V | or its product with 1 − γ,

depending on the parity of b.
This complex is

CV = Σ|V0|CV/V0

where V0 = V G. This means we can assume without loss of generality that V0 = 0.
An element

x ∈ HnC
V (G/H) = HnS

V (G/H)

corresponds to an element x ∈ πn−V HZ(G/H).

We will denote the dual complex HomZ(C
V ,Z) by C−V . Its chains lie in di-

mensions −n for 0 ≤ n ≤ |V |. An element x ∈ H−n(−V )(G/H) corresponds to an
element x ∈ πV−nHZ(G/H).

The method we have just described determines only a portion of the RO(G)-
graded Mackey functor π?HZ, namely the groups in which the index differs by an
integer from an actual representation V or its negative. For example it does not
give us πσ−λ(1)HZ for |G| ≥ 4.

Example 5. The case G = C8 and V = σ + λ(1). The representation V is not
orientable since it involves an odd multiple of σ. Its unit sphere S(V ) is S2 with
the following action of G. There is a generator γ which rotates the equator though
an angle of π/4 while reflecting through the equatorial plane. Thus the poles are
fixed by each proper subgroup, and no other point is fixed by a nontrivial subgroup.
It follows that in the one point compactification SV of V we have

(SV )H =

 SV for H = e
S1 for H = C2 or C4

S0 for H = G

S(V ) has a G-CW structure with

• two 0-cells (the north and south poles) interchanged by γ,
• eight 1-cells (equally spaced longitudinal lines joining the two poles with
alternating orientations) cyclically permuted by γ and

• eight 2-cells (regions between two adjacent longitudinal lines) cyclically per-
muted by γ.
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This means that SV has a similar G-CW structure with two fxied 0-cells in which
each positive dimensioanl cell is the double cone on a cell in S(V ). The reduced
cellular chain complex CV is

CV
0 CV

1 CV
2 CV

3

Z Z[G/G′]
∇
1

oo Z[G]
1−γ

1
oo Z[G]

1+γ

7
oo

(6)

where x2 = 1, x3 = 1 + γ and x4 = (1 + γ2)(1 + γ4). The number beneath each
arrow indicates its rank as a homomorphism. H3 ⊆ C3 is the subgroup generated
by

(1− γ)x4 = (1− γ)(1 + γ2)(1 + γ4).

The corresponding chain complex of fixed point Mackey functors is

CV
0 CV

1 CV
2 CV

3

Z

1 ��

Z
2

1
oo

1+γ ��

Z
0

0
oo

1+γ ��

Z
2

1
oo

1+γ ��
Z

1
��

2

WW

Z[G/G′]
∇
1

oo

1 ��

∇
WW

Z[G/G′]
4(1−γ)

1
oo

1+γ2

��

∇
WW

Z[G/G′]
1+γ

1
oo

1+γ2

��

∇
WW

Z

1
��

2

WW

Z[G/G′]
∇
1

oo

1 ��

2

UU

Z[G/C2]
2(1−γ)

1
oo

1+γ4

��

∇
UU

Z[G/C2]
1+γ

3
oo

1+γ4

��

∇
UU

Z

2

WW

Z[G/G′]
∇
1

oo
2

UU

Z[G]
1−γ

1
oo

∇
UU

Z[G]
1+γ

7
oo

∇
UU

and its homology is

H0S
V H1S

V H2S
V H3S

V

Z/2

��

0

��

Z/2

��

0

��
0

��

UU

Z/4

1 ��

WW

0

��

UU

Z−

1
��

WW

0

��

WW

Z/2

1
��

2

UU

0

��

WW

Z−

1 ��

2

UU

0

WW

0

UU

0

WW

Z−

2

UU

where Z− denotes Z[G/H]/(1 + γ) for the appropriate proper subgroup H. In
these diagrams of Mackey functors M , the top and bottom groups are M(G/G) and
M(G/e) with the values of M on intermediate groups in between. Downward and
upward pointing arrows are restrictions and transfers respectively.

Note that these homology groups are not fixed point Mackey functors, and H∗(G/H)
is not the same as H∗(S

V )H for any nontrival subgroup H.
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For the dual spectrum S−V we apply the functor HomZ(·,Z) to (6). The resulting
chain complex of fixed point Mackey functors is

C−V
0 C−V

−1 C−V
−2 C−V

−3

Z

1 ��

1 // Z
1+γ ��

0 // Z
1+γ ��

2 // Z
1+γ ��

Z

1
��

2

WW

1+γ // Z[G/G′]

1 ��

∇
WW

1−γ // Z[G/G′]

1+γ2

��

∇
WW

1+γ // Z[G/G′]

1+γ2

��

∇
WW

Z

1
��

2

WW

1+γ // Z[G/G′]

1 ��

2

UU

(1−γ)(1+γ2) // Z[G/C2]

1+γ4

��

∇
UU

1+γ // Z[G/C2]

1+γ4

��

∇
UU

Z

2

WW

1+γ // Z[G/G′]

2

UU

(1−γ)x4 // Z[G]

∇
UU

1+γ // Z[G]

∇
UU

with homology

H0S
−V H−1S

−V H−2S
−V H−3S

−V

0

��

0

��

0

��

Z/2

0 ��
0

��

WW

0

��

WW

0

��

WW

Z−

2 ��

1

UU

0

��

XX

0

��

XX

0

��

XX

Z−

2 ��

1

UU

0

XX

0

XX

0

XX

Z−

1

UU

Notice that H−3S
−V is quite different from H3S

V .

Example 5 illustrates the nonoriented case of the following, whose proof we leave
as an exercise.

Proposition 7. The top homology group. Let G be a finite cyclic 2-group and
V a nontrivial representation of G of degree d with V G = 0 and isotropy group GV .
Then CV

d = C−V
−d = Z[G/GV ] and

(i) If V is oriented then HdS
V = Z, the constant Z-valued Mackey functor

in which each restriction map is an isomorphism and each transfer TrKH
is multiplication by |K/H|. H−dS

−V = Z(G,GV ), the constant Z-valued
Mackey functor in which

ResKH =

{
1 for K ⊆ GV

|K/H| for GV ⊆ H

and

TrKH =

{
|K/H| for K ⊆ GV

1 for GV ⊆ H.
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(These determine all restrictions and transfers.) The functor Z(G, e) is

also known as the dual Z∗. These isomorphisms are induced by the maps

HdS
V H−dS

−V

Z
∆ // Z[G/GV ]

∇ // Z(G,GV )

(ii) If V is not oriented then HdS
V = Z−, where

Z−(G/H) =

{
0 for H = G
Z− otherwise

where each restriction map ResKH is an isomorphism and each transfer TrKH
is multiplication by |K/H| for each proper subgroup K. We also have
H−dS

−V = Z(G,GV )−, where

Z(G,GV )−(G/H) =

 0 for H = G and V = σ
Z/2 for H = G and V 6= σ
Z− otherwise

with the same restrictions and transfers as Z(G,GV ). These isomorphisms
are induced by the evident maps

HdS
V H−dS

−V

Z−
∆− // Z[G/GV ]

∇− // Z(G,GV )−

Definition 8. Three elements in πG
? (HZ). Let V be an actual (as opposed to

virtual) representation of the finite cyclic 2-group G with V G = 0 and isotropy
group GV .

(i) The equivariant inclusion S0 → SV defines an element in π−V S
0(G/G) via

the isomophisms

π−V S
0(G/G) = π0S

V (G/G) = π0S
V G

= π0S
0 = Z,

and we will use the symbol aV to denote its image in π−V HZ(G/G).

(ii) The underlying equivalence SV → S|V | defines an element in

πV S
|V |(G/GV ) = πV−|V |S

0(G/GV )

and we will use the symbol eV to denote its image in πV−|V |HZ(G/GV ).

(iii) If W is oriented, there is a map

∆ : Z → CW
|W |

as in Proposition 7 giving an element

uW ∈ H |W |S
W (G/G) = π|W |−WHZ(G/G).

For nonoriented V Proposition 7 gives a map

∆− : Z− → CV
|V |

and an element

uV ∈ H |V |S
V (G/G′) = π|V |−V HZ(G/G′).
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Note that aV and eV are induced by maps to equivariant spheres while uW is
not. This means that in any spectral sequence based on a filtration where the
subquotients are equivariant HZ-modules, elements defined in terms of aV and eV
will be permanent cycles, while mulitples of uW can support differentials.

Note also that a0 = e0 = u0 = 1. The trivial representations contribute nothing
to π?(HZ). We can limit our attention to representations V with V G = 0. Among
such representations of cyclic 2-groups, the oriented ones are precisely the ones of
even degree.

Lemma 9. Properties of aV , eV and uW . The elements aV ∈ π−V HZ(G/G),
eV ∈ πV−|V |HZ(G/GV ) and uW ∈ π|W |−WHZ(G/G) for W oriented satisfy the
following.

(i) aV+W = aV aW and uV+W = uV uW .
(ii) |G/GV |aV = 0 where GV is the isotropy group of V .

(iii) For oriented V , TrGGV
(eV ) and TrG

′

GV
(eV+σ) have infinite order while Tr

G
GV

(eV+σ)

has order 2 if |V | > 0, and TrGGV
(eσ) = 0.

(iv) For oriented W , TrGGV
(eW )uW = |G/GW | ∈ π0HZ(G/G) = Z.

(v) aV+WTrGGV
(eV+U ) = 0 if |V | > 0.

(vi) For V and W oriented, uWTrGGV
(eV+W ) = |GV /GV+W |TrGGV

(eV ).
(vii) The au relation. For V and W oriented representations of degree 2 with

GV ⊆ GW , aWuV = |GW /GV |aV uW .

For nonoriented W similar statements hold in π?HZ(G/G′). 2W is oriented

and u2W is defined in π2|W |−2WHZ(G/G) with ResGG′(u2W ) = u2
W .

Proof. (i) This follows from the existence of the pairing CV ⊗ CW → CV+W . It
induces an isomorphism in H0 and (when both V and W are oriented) in H|V+W |.

(ii) This holds because H0(V ) is killed by |G/GV |.
(iii) This follows from Proposition 7.
(iv) Using the Frobenius relation we have

TrGGV
(eW )uW = TrGGV

(eWResG1 (uW )) = TrGGV
(|G/GV |) = |G/GV |.

(v) We have

aV+WTrGGV
(eV+U ) : S

−|V |−|U | → SW−U .

It is null because the bottom cell of SW−U is in dimension −|U |.
(vi) Since V is oriented, then we are computing in a torsion free group so we can

tensor with the rationals. It follows from (iv) that

TrGGV +W
(eV+W ) =

|G/GV+W |
uV uW

and TrGGV
(eV ) =

|G/GV |
uV

so uWTrGGV +W
(eV+W ) =

|G/GV+W |
uV

= |GV /GV+W |TrGGV
(eV ).
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(vii) The relevant chain complexes are

0 1 2 3 4

CV : Z Z[G/GV ]
∇Voo Z[G/GV ]

1−γoo

CW : Z Z[G/GW ]
∇Woo Z[G/GW ]

1−γoo

CV+W : Z Z[G/GW ]
∇Woo Z[G/GW ]

1−γoo Z[G/GV ]
θWoo Z[G/GV ]

1−γoo

CV ⊗Z CW :

m

OO

Z
Z[G/GV ]⊗ Z

⊕
Z⊗ Z[G/GW ]

∂1oo

m1

OO

Z[G/GV ]⊗ Z
⊕

T (V,W )
⊕

Z⊗ Z[G/GW ]

∂2oo

m2

OO

T (V,W )
⊕

T (V,W )

∂3oo

m3

OO

T (V,W )
∂4oo

m4

OO

where ∇V and ∇W are fold or reduction maps sending each power of γ to 1,

θW =
∑

0≤i<|G/GW |

γi

and

T (V,W ) = Z[G/GV ]⊗Z Z[G/GW ] =
⊕

|G/GW |

Z[G/GV ].

To describe the mapsmi and ∂i we use left matrix multiplication on column vectors.
We have

∂1 =
[
∇V ∇W

]
m1 =

[
∇V,W 1

]
∂2 =

[
1− γ ? 0
0 ? 1− γ

]
m2 =

[
∇V,W ? 1

]
where ∇V,W is the reduction map and the unidentified maps from T (V,W ), namely
∂3, ∂4, m3 and m4, are not relevant here.

We have a noncommuting diagram

CV CV ⊗aW // CV ⊗ CW

m2��
Σ2Z

uV

OO

uW ��

CV+W

CW aV ⊗CW

// CV ⊗ CW

m2

OO

where the maps to the relevant summands are

Z[G/GV ] Z[G/GV ]⊗ Z

∇V,W��
Z

∆V

OO

∆W ��

Z[G/GW ]

Z[G/GW ] Z⊗ Z[G/GW ]
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where

∆V =
∑

0≤i<|G/GV |

γi

∆W =
∑

0≤i<|G/GW |

γi.

The upper composite is |GW /GV | times the lower one, so aWuV = |GW /GV |aV uW

as claimed. �

3. The case G = C4

Now let G = C4 with generator γ, and let G′ ⊆ G be its index 2 subgroup. Then
the above discussion leads at a diagram

RO(G) RO(G′) Z

Z πG
? X(G/G)

Res42

��
Z[G/G′] πG

? (X)(G/G′)

Tr42

TT

Res21

��

r42

44
πG′

? X(G′/G′)

Res21

��

t42
ss

Z[G] πG
? (X)(G/e)

Tr21

TT

r42

44
πG′

? X(G′/e)

Tr21

TT

r21

66

t42
ss

π?X

t21ss

(10)

Here the homotopy groups are modules over the rings shown on the left and graded
over the indexing groups shown above. The group action transfers t42 and t21 are
defined only on groups indexed by representations the smaller group which extend
to representations of the larger group. We will make no use of them in this paper.

In the bottom row each homotopy group is an underlying homotopy group of
X depending only on the degree of the indexing representation. The group action
restriction maps are isomorphisms. The group action transfers are

t21(r
2
1(x)) = (1 + γ2)x and t42(r

4
2(y)) = (1 + γ)y.

In the middle row each homotopy group depends only on the restriction of the
representation to G′. The restriction r42 is an isomorphism in each RO(G)-graded
degree, but it misses half of the RO(G′)-graded degrees. The transfer is multipli-
cation by 1 + γ when the representation of G′ is the restriction of one of G.

We need some notation for Mackey functors to be used in spectral sequence
charts. The first four in Table 1 are fixed point Mackey functors (4), meaning they
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Table 1. Some C4-Mackey functors

2 2̂ 2 2̂ • •̂
Z

1 ��
Z

1 ��

2

XX

Z
2

XX

Z

∆ ��
Z[G/G′]

1 ��

∇
WW

Z[G/G′]

2
UU

0

��
Z−

1 ��

XX

Z−

2
UU

0

��
0

��

XX

Z[G/G′]−

XX

Z/2

��
0

��

UU

0

XX

Z/2

∆ ��
Z/2[G/G′]

��

∇
UU

0

UU

2̇ ̂̇2 H N ̂
Z/2

0 ��
Z−

1

UU

2 ��
Z−

1

UU

Z/2

∆ ��
Z/2[G/G′]

0 ��

∇
UU

Z[G/G′]−

1
UU

Z/2

0 ��
Z/2

1

UU

��
0

UU

Z/2

1 ��
Z/2

0

UU

��
0

UU

Z

2 ��
Z

2 ��

1

WW

Z

1

WW

Z

∆ ��
Z[G/G′]

2 ��

∇
WW

Z[G/G′]

1
UU

◦ ̂̂2 •
Z

2 ��
Z

1 ��

1

WW

Z

2

WW

Z/4

1 ��
Z/2

��

2
UU

0

UU

Z/2

0 ��
Z/2

0 ��

1
UU

Z[G/G′]−

∇
UU

Z

∆ ��
Z[G/G′]

∆ ��

∇
WW

Z[G]

∇
UU

0

��
Z/2

��

XX

0

UU

0

��
Z−

2 ��

XX

Z−

1
UU

are fixed points of an underlying Z[G]-module M , such as

Z = Z[G]/(γ − 1) Z[G/G′] = Z[G]/(γ2 − 1)
Z− = Z[G]/(γ + 1) Z[G/G′]− = Z[G]/(γ2 + 1).

There are short exact sequences

0 // •̂ // ̂̇2 // 2̂ // 0

0 // • // 2̇ // 2 // 0

0 // H // ◦ // • // 0

0 // • // ◦ // N // 0

0 // // 2 // ◦ // 0

0 // // 2 // • // 0

Here the hat symbol is used for a Mackey functor induced up from C2, for which
our notation is shown in Table 2, where , the dual of 2, is the kernel of the
surjective map 2 → •.
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Table 2. Some C2-Mackey functors

2 2 • 2̇ H N 2̂
Z

1 ��
Z

2

WW 0

��
Z−

XX Z/2

��
0

UU
Z

2 ��
Z

1

WW Z/2

0 ��
Z−

1

UU
Z/2

0 ��
Z/2

1

UU
Z/2

1 ��
Z/2

0

UU
Z

∆ ��
Z[G]

∇
WW

We have short exact sequences

0 // // 2 // • // 0(11)

0 // • // 2̇ // 2 // 0(12)

Proposition 13. Exactness of Mackey functor induction. The induction
functor above is exact. It sends a C2-Mackey functor M of the form

M(C2/C2)

Res21 ��
M(C2/e)

Tr21

UU

to the C4-Mackey functor M̂ of the form

M̂(C4/C4) = M(C2/C2)

∆⊗M(C2/C2)
��

M̂(C4/C2) = Z[C4]⊗Z[C2] M(C2/C2)

∇⊗M(C2/C2)

UU

Z[C4]⊗Z[C2]Res21
��

M̂(C4/e) = Z[C4]⊗Z[C2] M(C2/e)

Z[C4]⊗Z[C2]Tr
2
1

TT

The same holds for induction up to G of a Mackey functor defined for a subgroup
H of G for any finite G.

Definition 14. A Z[C4]-enriched C2-Mackey functor. For a C2-Mackey func-

tor M as above, M̃ will denote the C2-Mackey functor enriched over Z[C4] defined
by

M̃(C2/H) = Z[C4]⊗Z[C2] M(C2/H)

for H = C2 or e with structure maps as above.

4. Some chain complexes of Mackey functors

As noted above, a G-CW complex X, meaning one built out of cells of the form
G+ ∧

H
en, has a reduced cellular chain complex of Z[G]-modules C∗X, leading to a

chain complex of fixed point Mackey functors (see (4)) C∗X. When X = SV for

a representation V , we will denote this complexes CV
∗ . Its homology is the graded

Mackey functor H∗X. Here we will apply the methods of §2 to three examples.
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(i) Let G = C2 with generator γ, and X = Snρ for n > 0, where ρ denotes
the regular representation. We have seen before [HHR, 3.6] that it has a reduced
cellular chain complex C with

(15) Cnρ2

i =

 Z[G]/(γ − 1) for i = n
Z[G] for n < i ≤ 2n
0 otherwise.

Let ci denote a generator of Ci. The boundary operator d is given by

(16) d(ci+1) =

 ci for i = n
γi+1−n(ci) for n < i ≤ 2n
0 otherwise

where γi = 1− (−1)iγ. For future reference, let

εi = 1− (−1)i =

{
0 for i even
2 for i odd.

This chain complex has the form

n n+ 1 n+ 2 n+ 3 2n

2 2̂∇oo 2̂
γ2oo 2̂

γ3oo · · ·oo 2̂
γnoo

Z

1 ��

Z

∆ ��

2oo Z

∆ ��

0oo Z

∆ ��

2oo · · ·oo Z

∆ ��

εnoo

Z

2

WW

Z[G]

∇
WW

∇oo Z[G]

∇
WW

γ2oo Z[G]

∇
WW

γ3oo · · ·oo Z[G]

∇
WW

γnoo

Passing to homology we get

n n+ 1 n+ 2 n+ 3 2n

• 0 • 0 · · · H2n

Z/2

��

0

��

Z/2

��

0

��

· · · H2n(G/G)

∆ ��
0

UU

0

WW

0

UU

0

WW

· · · Z[G]/(γn+1)

∇
UU

where

H2n(G/G) =

{
Z for n even
0 for n odd

and H2n =

{
2 for n even
2 for n odd

Here 2 and 2 are fixed point Mackey functors but • is not.
Similar calculations can be made for Snρ2 for n < 0. The results are indicated

in Figure 1.
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−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Figure 1. The (collapsing) Mackey functor slice spectral sequence
for HZ ∧

∨
n∈Z Snρ2 . The symbols are defined in Table 2.

In other words the RO(G)-graded Mackey functor valued homotopy of HZ is as
follows. For n > −3/2 we have

πiΣ
nρ2HZ = πi−nρ2

HZ =



2 for n even and i = 2n
• for n even and i = 2n− 2j with 0 < j ≤ n/2
2 for n odd and i = 2n
• for n odd and i = 2n+ 1− 2j

with 0 < j ≤ (n+ 1)/2
0 otherwise

For n < −3/2 we have

πiΣ
nρ2HZ = πi−nρ2

HZ =



for n even and i = 2n
• for n even and i = 2n+ 2j − 1

with 0 < j ≤ (−3− n)/2
2̇ for n odd and i = 2n
• for n odd and i = 2n+ 2j

with 0 < j ≤ (−3− n)/2
0 otherwise

We can use Definition 8 to name some elements of these groups.
Note that HZ is a commutative ring spectrum, so there is a commutative mul-

tiplication in π?HZ, making it a commutative Green functor. For such a functor
M on a general group G, the restriction maps are a ring homomorphisms while the
transfer maps satisfy the Frobenius relations (1).
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−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

2̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂

2̂ 2̂ 2̂ 2̂ 2̂̂̇2 ̂̇2 ̂̇2̂ ̂ ̂ ̂

•̂
•̂
•̂
•̂
•̂
•̂

•̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂•̂

•̂

2̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂

2̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂
•̂

2̂
•̂
•̂
•̂
•̂

2̂

Figure 2. The Mackey functor slice spectral sequence for
G+ ∧G′

∨
n∈Z Σnρ2HZ, for G = C4 and G′ = C2. The symbols

are for C4-Mackey functors defined in Table 1.

Then

(17)



2-slice:
a = aσ ∈ π1Σ

ρ2HZ(G/G) = π−σHZ(G/G)
x = uσ ∈ π2Σ

ρ2HZ(G/e) = π1−σHZ(G/e)
with γ(x) = −x

4-slice:
u = u2σ ∈ π4Σ

2ρ2HZ(G/G) = π2−2σHZ(G/G)
with Res(u) = x2

negative slices:
zn = e2nρ2

∈ π−4nΣ
−2nρ2HZ(G/e)

= π2n(σ−1)HZ(G/e) for n > 0

a−iTr(x−2n−1) ∈ π−4n−2−iΣ
−(2n+1+i)ρ2HZ(G/G)

= π(2n+1)(σ−1)+iσHZ(G/G)

for n > 0 and i ≥ 0

are the generators of their respective groups. We have relations

2a = 0 Res(a) = 0

zn = x−2n Tr(xn) =

 2un/2 for n even and n ≥ 0
Tr(z−n/2) for n even and n < 0
0 for n odd and n > −3.

(ii) Let G = C4 with generator γ, G′ = C2 ⊆ G, the subgroup generated by γ2,

and Ŝ(n,G′) = G+ ∧
G′

Snρ2 . Thus we have

C∗(Ŝ(n,G
′)) = Z[G]⊗Z[G′] C

nρ2
∗

with Cnρ2
∗ as in (15). The calculations of the previous example carry over verbatim

by the exactness of 13.
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The results are indicated in Figure 2, which is obtained from the Figure 1 by
putting a hat over each symbol. We will name elements in the groups shown here
as follows. For an element

α ∈ πG′

i−V HZ(G′/K) = πG′

i ΣV HZ(G′/K),

such as those listed in (17), we denote the two corresponding elements in

πG
i (G+ ∧

G′
ΣV HZ)(G/K) = Z[G]⊗Z[G′] π

G′

i ΣV HZ(G′/K)

= πG′

i−V HZ(G′/K)⊕ πG′

i−V HZ(G′/K)

by α̂ and γ(α̂). We have γ2(α̂) = ±α̂, and there is no canonical choice of α̂.
When the representation V of G′ is the restriction of a representation W of G,

then this group is

πG
i−W (G+ ∧

G′
HZ)(G/K)

When K = G′, the two elements have the same image in

πG
i (G+ ∧

G′
ΣV HZ)(G/G) = πi(G+ ∧

G′
ΣV HZ)G = πi(Σ

V HZ)G
′
= πi(Σ

V HZ)(G′/G′)

under the transfer, namely the element corresponding to α under the evident iso-
morphisms. Hence if α (or a set of such elements) generates the group πG′

i ΣV HZ(G′/G′),
then t42(α̂) (or the corresponding set) generates πG

i (G+ ∧
G′

ΣV HZ)(G/G).

(iii) Let G = C4 and X = Snρ4 . Then the reduced cellular chain complex is

Cnρ4

i =


Z for i = n
Z[G/G′] for n < i ≤ 2n
Z[G] for 2n < i ≤ 4n
0 otherwise

with

d(ci+1) =


ci for i = n
γi+1−nci for n < i ≤ 2n
θi+1−nci for 2n < i < 4n and i even
γi+1−nci for 2n < i < 4n and i odd
0 otherwise,

where

θi = γi(1 + γ2) = (1− (−1)iγ)(1 + γ2).

The fixed point Mackey functors for Z = Z[G/G], Z[G/G′] and Z[G] = Z[G/e],

are 2, 2̂ and ̂̂2. In low dimensions the chain complex of Mackey functors is

n n+ 1 n+ 2 n+ 3

2 2̂∇oo 2̂
1−γoo 2̂

1+γoo · · ·oo

In homology this gives

n n+ 1 n+ 2 n+ 3

• 0 • 0 · · ·
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◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

2 2 2 22 2 2
• • •◦ ◦ ◦

◦ ◦ ◦• • •
◦ ◦• • •

◦ ◦ ◦• •
• •◦ ◦

◦ ◦• •
• •◦

◦ ◦•

Figure 3. The Mackey functor slice spectral sequence for∨
n∈Z Σnρ4HZ. The symbols are defined in Table 1. The Mackey

functor at position (4n− s, s) is πn(4−ρ4)−sHZ.

In dimensions near 2n we have

2n 2n+ 1 2n+ 2 2n+ 3

· · · 2̂
γnoo ̂̂2γn+1oo ̂̂2γn+2oo ̂̂2θn+3oo · · ·

γn+4oo

· · · Z

∆ ��

εnoo Z

∆ ��

2εn+1oo Z

∆ ��

εn+2oo Z

∆ ��

2εn+3oo · · ·
εn+4oo

· · · Z[G/G′]

1 ��

∇
WW

γnoo Z[G/G′]

∆ ��

∇
WW

2γn+1oo Z[G/G′]

∆ ��

∇
WW

γn+2oo Z[G/G′]

∆ ��

∇
WW

2γn+3oo · · ·
γn+4oo

· · · Z[G/G′]

2

UU

γnoo Z[G]

∇
UU

γn+1oo Z[G]

∇
UU

γn+2oo Z[G]

∇
UU

θn+3oo · · ·
γn+4oo

The homology is

H2n+i =



◦ for n and i even and 0 ≤ i < 2n
• for n and i odd and 0 ≤ i < 2n
• for n odd and i even and 0 ≤ i < 2n
2 for n even and i = 2n
2 for n odd and i = 2n
0 otherwise

Again similar calculations can be made for Snρ4 for n < 0. The results are
indicated in Figure 3. The Mackey functors in filtration 0 (the horizontal axis) are
the ones described in Proposition 7.
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As in (i), we name some of these elements. Let G = C4 and G′ = C2 ⊆ G. Recall
that the regular representation ρ4 is 1 + σ + λ where σ is the sign representation
and λ is the 2-dimensional representation given by a rotation of order 4.

Note that while Figure 1 shows all of π?HZ for G = C2, Figure 3 shows only a
bigraded portion of this trigraded Mackey functor for G = C4, namely the groups
for which the index differs by an integer from a multiple of ρ4. We will need to
refer to some elements not shown in the latter chart, namely

aσ ∈ π−σHZ(G/G) aλ ∈ π−λHZ(G/G)
uσ ∈ π1−σHZ(G/G′) uλ ∈ π2−λHZ(G/G)
u2σ ∈ π2−2σHZ(G/G)

with 2aλu2σ = a2σuλ and Res42(u2σ) = u2
σ; see Definition 8 and Lemma 9.

We will denote the generator of Es,t
2 (G/H) by xt−s,s, yt−s,s and zt−s,s forH = G,

G′ and e respectively. Then the generators for the groups in the 4-slice are

y4,0 = uρ4 = uσRes
4
2(uλ) ∈ π4Σ

ρ4HZ(G/G′) = π3−σ−λHZ(G/G′)

with γ(x4,0) = −x4,0

x3,1 = aσuλ ∈ π3Σ
ρ4HZ(G/G) = π2−σ−λHZ(G/G)

y2,2 = Res42(aλ)uσ ∈ π2Σ
ρ4HZ(G/G′) = π1−σ−λHZ(G/G′)

x1,3 = aρ4
= aσaλ ∈ π1Σ

ρ4HZ(G/G) = π−σ−λHZ(G/G)

and the ones for the 8-slice are

x8,0 = u2λ+2σ = u2ρ4 ∈ π8Σ
2ρ4HZ(G/G) = π6−2σ−2λHZ(G/G)

with y24,0 = y8,0 = Res42(x8,0)

x6,2 = aλuλ+2σ ∈ π6Σ
2ρ4HZ(G/G) = π4−2σ−2λHZ(G/G)

with x2
3,1 = 2x6,2

and y4,0y2,2 = y6,2 = Res42(x6,2)

x4,4 = a2λu2σ ∈ π4Σ
2ρ4HZ(G/G) = π2−2σ−2λHZ(G/G)

with y22,2 = y4,4 = Res42(x4,4)

and x1,3x3,1 = 2x4,4

x6,2 = x2
3,1 ∈ π2Σ

2ρ4HZ(G/G) = π−2σ−2λHZ(G/G).

These elements and their restrictions generate π∗Σ
mρ4HZ for m = 1 and 2. For

m > 2 the groups are generated by products of these elements. There are relations

2aσ = 0 Res42aσ = 0
4aλ = 0 2Res42aλ = 0 Res41aλ = 0

The element

z4,0 = Res21(y4,0) = Res21(uρ4) ∈ π4Σ
ρ4HZ(G/e)

is invertible with γ(y) = −y, z24,0 = z8,0 = Res41(x8,0) and

z−4m,0 := z−m
4,0 = emρ4

∈ π−4mΣ−mρ4HZ(G/e) for m > 0.

These elements and their transfers generate the groups in

π−4mΣ−mρ4HZ for m > 0.
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Theorem 18. Divisibilities in the negative regular slices for C4. There are
the following infinite divisibilities in the third quadrant of the spectral sequence in
Figure 3.Proof???

• x−4,0 = Tr41(z−4,0) is infinitely divisible by x4,4 and x1,3, meaning that

xj
4,4x

k
1,3x−4−4j−k,−4j−3k = x−4,0 for j, k ≥ 0.

• x−7,−1 is infinitely divisible by x4,4, x6,2 and x8,0, meaning that

xi
4,4x

j
6,2x

k
8,0x−7−4i−6j−8k,−1−4i−2j = x−7,−1 for i, j, k ≥ 0,

subject to the relation x2
6,2 = x8,0x4,4.

• x−10,−2 is infinitely divisible by x4,4, x6,2 and x8,0, meaning that

xi
4,4x

j
6,2x

k
8,0x−10−4i−6j−8k,−2−4i−2j = x−10,−2 for i, j, k ≥ 0

with

2x−7−4i−6j−8k,−1−4i−2j = x3,1x−10−4i−6j−8k,−2−4i−2j

= x1,3x−8−4i−8j−6k,−4−4i−2j

for i, j, k ≥ 0.

• y−7,−1 = Res42(x−7,−1) is infinitely divisible by y2,2 and y4,0, meaning that

yj2,2y
k
4,0y−7−2j−4k,−1−2j = y−7,−1 for j, k ≥ 0.

5. The C4-spectrum kH

Before defining our spectrum we need to recall some formulas from [HHR]. Let
G be a finite cyclic 2-group with generator γ. In [HHR, 5.47] we defined generators

(19) rk = rGk ∈ πC2

kρ2
MU ((G))(C2/C2)

(note that this group is a module over G/C2) and

rk = r21Res
2
1(rk) ∈ πe

nρ2
MU ((G))(e/e) = πu

2nMU ((G)).

These are defined in terms of the coefficients

mk ∈ πC2

kρ2
HZ(2) ∧MU ((G))(C2/C2)

of the logarithm of the formal group associated with the left unit map from MU
to MU ((G)). For small k we have

r1 = (1− γ)(m1)

r2 = m2 − 2γ(m1)(1− γ)(m1)

r3 = (1− γ)(m3)− γ(m1)(m
2
1 + 2m1γ(m1)− 3γ(m1)

2 − 2m2)

Now let G = C4 and G′ = C2 ⊆ G. The generators rGk are the rk defined above.

We also have generators rG
′

k defined by similar formulas with γ replaced by γ2;
recall that γ2(mk) = (−1)kmk. Thus we have

rG
′

1 = 2m1

rG
′

2 = m2 + 4m2
1

rG
′

3 = 2m3 − 2m1m2 − 4m3
1
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If we set r2 = 0 and r3 = 0, we get

rG
′

1 = (1 + γ)(r1)

rG
′

2 = 3r1γ(r1) + γ(r1)
2

rG
′

3 = 5r21γ(r1) + 5r1γ(r1)
2 + γ(r1)

3

rG
′

3 γ(rG
′

3 ) = −r1γ(r1)
(
5γ(r1)

2 − 5r1γ(r1) + r21
)(

γ(r1)
2 + 5r1γ(r1) + 5r21

)
= −5r51γ(r1) + 20r41γ(r1)

2 − r31γ(r1)
3

−20r21γ(r1)
4 − 5r1γ(r1)

5

(20)

Let kH be the G-spectrum obtained from MU ((G)) by killing the rns and their
conjugates for n ≥ 2. We will often use a (second) subscript ε to indicate the action
of γ, so γ(xε) = x1+ε and x2+ε = ±xε.

Then we have
(21)

πu
∗kH = π∗kH(G/e) = Z[r1, γ(r1)] = Z[r1,0, r1,1] where γ2(r1,ε) = −r1,ε.

Here we use r1,ε and r1,ε to denote the images of elements of the same name in the

homotopy of MU ((G)).
The Periodicity Theorem [HHR, 9.12] states that inverting a class

D ∈ π4ρ4
kH(G/G)

whose image under r42Res
4
2 is divisible by rG

′

3,0r
G′

3,1 (see (20)) and r1,0r1,1 makes u8ρ4

a permanent cycle. Let

D = (r42Res
4
2)

−1
(
rG1,0r

G
1,1r

G′

3 γ(rG
′

3 )
)
∈ π4ρ4

kH(G/G)

(see Table 3 for a more explicit description) and KH = D−1kH. Then we know
that Σ32KH is equivalent to KH.

The Slice and Reduction Theorems [HHR, 6.1 and 6.5] imply that the 2kth slice
of kH is the 2kth wedge summand of

HZ ∧N4
2

∨
i≥0

Siρ2

 .

It follows that over G′ the 2kth slice is a wedge of k + 1 copies of HZ ∧ Skρ2 .
The group πG′

ρ2
kH(G′/e) is not in the image of the group action restriction r42

because ρ2 is not the restriction of a representation of G. However, πu
2 kH is refined

(in the sense of [HHR, 5.29]) by a map from

(22) Sρ2 = G+ ∧
G′

Sρ2
s1 // kH.

The reduction theorem implies that the 2-slice P 2
2 kH is Sρ2 ∧HZ. We know that

π2(Sρ2 ∧HZ) = 2̂.

We use the symbols r1 and γ(r1) to denote the generators of the underlying abelian

group of 2̂(G/e) = Z[G/G′]−. These elements have trivial fixed point transfers and

π2(Sρ2
∧HZ)(G/G′) = 0.



22 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Tables 3 and 4 describe some elements in the low dimensional homotopy of kH,
which we now discuss.

Given an element in π?MU ((G)), we will often use the same symbol to denote its
image in π?kH. For example, in [HHR, 9.1]

(23) d̄k ∈ πG
(2k−1)ρ4

MU ((G)) = πG
(2k−1)ρ4

MU ((G))(G/G)

was defined to be the composite

S(2k−1)ρ4 N4
2S

(2k−1)ρ2
N4

2 r2k−1 // N4
2MU ((G)) // MU ((G)).

We will use the same symbol to denote its image in πG
ρ4
kH(G/G).

The element η ∈ π1S
0 (coming from the Hopf map S3 → S2) has image

aσr1 ∈ πG′

1 kR(G′/G′). There are two corresponding elements

ηε ∈ πG′

1 kH(G′/G′) for ε = 0, 1.

We use the same symbol for their preimages under r42. We denote by η again
the image of either under the transfer Tr42. It is the image of the Hopf map in
π1kH(G/G), and Res42(η) = η0 + η1.

Its cube is killed by a d3 in the slice spectral sequence, as is the sum of any two
monomials of degree 3 in the ηε. It follows that in E4 each such monomial is equal
to η30 . It has a nontrivial transfer, which we denote by x3.

In [HHR, 5.51] we defined

(24) fk = akρN
g
2 rk ∈ πkMU ((G))(G/G)

for a finite cyclic 2-group G. Its slice filtration is k(g − 1) and we conjecture thatProof???

(25) TrGG′(uσRes
G
G′(x)) = aσf1x.

Somehow this is related to the first slice differential,

d1+|G|(u2σ) = a2σf1.

In particular, for G = C4 we have

f1 = aσaλd̄1 with Tr42(uσRes
4
2(x)) = aσf1x.

For example

Tr42(η0η1) = Tr42(uσRes
4
2(aλd̄1)) = aσf1aλd̄1 = f2

1 .

The Hopf element ν ∈ π3S
0 has image

aσuλd̄1 ∈ π3kH(G/G),

so we also denote the latter by ν. It has an exotic restriction η30 (filtration jumpProof???

two), which implies that

2ν = Tr42(Res
4
2(ν)) = Tr42(η

3
0) = x3.
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One way to see this is to use the Periodicity Theorem to equate π3kH with π−29kH,
which can be shown to be the Mackey functor ◦ in slice filtration −32. Another
argument not relying on periodicity is given below in (39).

The exotic restriction on ν implies

Res42(ν
2) = η60 ,

with filtration jump 4.

Theorem 26. The Hurewicz image The elements η ∈ π1kH(G/G), ν ∈ π3kH(G/G),
ε ∈ π8kH(G/G), κ ∈ π14kH(G/G), and κ ∈ π20kH(G/G) are the images of ele-
ments of the same names in π∗S

0.

We refer the reader to [Rav86, Table A3.3] for more information about these
elements.

Proof. Suppose we know this for ν and κ. Then ∆−4
1 ν is represented by an element

of filtration −3 whose product with ν2 is nontrivial. This implies that ν3 has
nontrivial image in π9kH(G/G). This is a nontrivial multiplicative extension in the
first quadrant, but not in the third.

Since ν3 = ηε in π∗S
0, this implies that η and ε are both detected and have the

images stated in Table 4. It follows that εκ has nontrivial image here. Since κ2 = εκ
in π∗S

0, κ must also be detected. Its only possible image is the one indicated. More details

needed here.Both ν and κ have images of order 8 in π∗tmf and its K(2) localization. The
latter is the homotopy fixed point set of an action of the binary tetrahedral group
G24 acting on E2. This in turn is a retract of the homotopy fixed point set of
the quaternion group Q8. A restriction and transfer argument shows that both
elements have order at least 4 in the homotopy fixed point set of C4 ⊂ Q8. WE
NEED TO RELATE THIS C4 ACTION TO THE ONE WE ARE STUDYING.

�

6. Slices for kH and KH

Let
∆1 = u2ρ4

d̄21 ∈ π8kH(G/G)
δ1 = uρ4Res

4
2(d̄1) ∈ π4kH(G/G′),

so δ21 = Res42(∆1). Hence we have

δm1 = δ
m−2[m/2]
1 Res42(∆

[m/2]
1 )

=

{
uσRes

4
2(u

[m/2]
2σ um

λ d̄m1 ) for m odd

Res42(u
m/2
2σ um

λ d̄m1 ) for m even.

Theorem 27. The slice E2-term for kH. The slices of kH are

P s
s kH =

{ ∨
0≤m≤s/4 Xm,s/2−m for s even and s ≥ 0

∗ otherwise

where

Xm,n =

{
Σmρ4HZ for m = n
G+ ∧

G′
Σ(m+n)ρ2HZ for m < n
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Table 3. Some elements of filtration 0 in the homotopy of and
slice spectral sequence for kH. Refer to Table 4 for targets of
differentials and transfers.

Element Description

r1,ε ∈ πG′

ρ2
kH(G′/G′) with

r1,2 = −r1,0

Images from (19) defined in [HHR, 5.47]

r1,ε ∈ πG′

2 kH(G′/e) uσ2
Res21(r1,ε)

r1,ε ∈ πG
2 kH(G/e) with

r1,2 = −r1,0

Preimages of the above under r42,

generating 2̂ = πG
2 kH/torsion

s2,ε ∈ πG
ρ4
kH(G/G′) Preimages of r21,ε under r42

d̄1 ∈ πG
ρ4
kH(G/G) with

r42Res
4
2(d̄1) = r1,0r1,1 and

Tr42(Res
4
2(d̄1)) = 0

Image from (23) defined in [HHR, 9.1]

t2 ∈ πG
ρ4
kH(G/G) with

Res42(t2) = s2,0 − s2,1

(−1)εTr42(s2,ε)

D ∈ π4ρ4
kH(G/G), the periodicity

element
d̄21(−5t

2
2 + 20t2d̄1 + 9d̄21)

uσ ∈ π1−σkH(G/G′) with
γ(uσ) = −uσ and
Tr42(uσ) = aσf1 (exotic transfer).

Isomorphic image of 1 ∈ π0kH(G/G′)

Σ2,ε ∈ E0,4
2 kH(G/G′) with

Σ2,2 = Σ2,0 and d3(Σ2,ε) = η2ε (η0 + η1)
(−1)εuρ4

s2,ε
= (−1)εuσRes

4
2(uλ)s2,ε

T2 ∈ E0,4
2 kH(G/G) with

Res42(T2) = Σ2,0 +Σ2,1 and
d3(T2) = η3

Tr42(Σ2,ε) = (−1)εuλTr
4
2(uσs2,ε)

T4 ∈ E0,8
2 kH(G/G) with

T 2
4 = ∆1(T

2
2 − 4∆1),

Res42(T4) = (Σ2,0 − Σ2,1)δ1 and
d3(T4) = 0

(−1)εTr42(Σ2,εδ1) = u2σu
2
λt2d̄1

δ1 ∈ E0,4
2 kH(G/G′) with

γ(δ1) = −δ1, Tr
4
2(δ1) = 0

and d3(δ1) = η0η1(η0 + η1)

uρ4
Res42(d̄1) = uσRes

4
2(uλd̄1)

∆1 ∈ E0,8
2 kH(G/G) with

Res42(∆1) = δ21 and
d5(∆1) = νx4

u2ρ4
d̄21 = u2σu

2
λd̄

2
1

The structure of πu
∗kH as a Z[G]-module (see (21)) leads to four types of orbits

and slices:

(1)
{
(r1,0r1,1)

2`
}
leading to X2`,2` for ` ≥ 0; see the leftmost diagonal in Fig-

ure 5. On the 0-line we have a copy of 2 (see Table 1) generated under
restrictions by

∆`
1 = u2`ρ4

d̄2`1 = u`
2σu

2`
λ d̄2`1 ∈ E0,8`

2 (G/G).

In positive filtrations we have

◦ ⊆ E2j,8`
2 generated by
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Table 4. Some elements of positive filtration in the homotopy of
and slice spectral sequence for kH.

Element Description

ηε ∈ πG′

1 kH(G′/G′) with 2ηε = 0 aσ2r1,ε
ηε ∈ πG

1 kH(G/G′) Preimage of the above under r42,
generating the summand •̂ of π1kH

f1 ∈ π1kH(G/G) aσaλd̄1, generating the summand • of
π1kH

η ∈ πG
1 kH(G/G) with

Res42(η) = η0 + η1 ∈ πG
1 kH(G/G′)

Tr42(ηε) + f1

η2ε , η0η1 ∈ πG
2 kH(G/G′) with

Tr42(η
2
ε ) = η2 and

Tr42(η0η1) = f2
1 (exotic transfer)

uσRes
4
2(aλ)s2,ε and uσRes

4
2(aλd̄1),

generating the torsion •̂ ⊕ H in πG
2 kH

η30 = η20η1 = η0η
2
1 = η31 ∈ πG

3 kH(G/G′) ηεuσRes
4
2(aλd̄1) = ηεuσRes

4
2(aλs2,ε)

x3 ∈ π3kH(G/G) with Res42(x3) = 0 Tr42(η
3
0)

ν ∈ π3kH(G/G) with Res42(ν) = η30 and
2ν = x3 (exotic restriction and group
extension)

aσuλd̄1, generating ◦ = π3kH

x4 ∈ E4,8
2 (G/G) with d5(x4) = f3

1 ,

Res42(x4) = (η0η1)
2 = η40 and 2x4 = f1ν

a2λu2σ d̄
2
1

ν2 ∈ π6kH(G/G) 2aλuλu2σ d̄
2
1 = 〈2, η, f1, f2

1 〉
ε ∈ π8kH(G/G) Represents x2

4 ∈ E8,16
2 (G/G)

ν3 = ηε ∈ π9kH(G/G) Represents f1x
2
4 ∈ E8,16

2 (G/G)
κ ∈ π14kH(G/G) 2aλu

2
2σu

3
λd̄

4
1

κ ∈ π20kH(G/G) a2λu
3
2σu

4
λd̄

6
1

ajλu
`
2σu

2`−j
λ d̄2`1 ∈ E2j,8`

2 (G/G) for 0 < j ≤ 2` and

• ⊆ E2k+4`,8`
2 generated by

a2kσ a2`λ u`−k
2σ d̄2`1 ∈ E2k+4`,8`

2 (G/G) for 0 < k ≤ `.

(2)
{
(r1,0r1,1)

2`+1
}
leading to X2`+1,2`+1 for ` ≥ 0; see the leftmost diagonal

in Figure 6. On the 0-line we have a copy of 2 generated under restrictions
by

δ2`+1
1 = u2`+1

σ Res42(uλd̄1)
2`+1 ∈ E0,8`+4

2 (G/G′).

In positive filtrations we have

• ⊆ E2j,8`+4
2 generated by

u2`+1
σ Res42(a

j
λu

2`+1−j
λ d̄2`+1

1 ) ∈ E2j,8`+4
2 (G/G′) for 0 < j ≤ 2`+ 1,

• ⊆ E2j+1,8`+4
2 generated by

aσa
j
λu

`
2σu

2`+1−j
λ d̄2`+1

1 ∈ E2j+1,8`+4
2 (G/G) for 0 ≤ j ≤ 2`+ 1 and

• ⊆ E2k+4`+3,8`+4
2 generated by

a2k+1
σ a2`+1

λ u`−k
2σ d̄2`+1

1 ∈ E2k+4`+3,8`+4
2 (G/G) for 0 < k ≤ `.
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(3)
{
ri1,0r

2`−i
1,1 , r2`−i

1,0 ri1,1
}
leading to Xi,2`−i for 0 ≤ i < `; see other diagonals

in Figure 5. On the 0-line we have a copy of 2̂ generated (under Tr42, Res
2
1

and the group action) by

u`
σs

`−i
2 Res42(u

`
λd̄

i
1) ∈ E0,4`

2 (G/G′)

In positive filtrations we have

•̂ ⊆ E2j,4`
2 generated by

u`
σs

`−i
2 Res42(a

j
λu

`−j
λ d̄i1)

∈ E2j,4`
2 (G/G′) for 0 < j ≤ `

= η2jε u`−j
σ s`−i−j

2 Res42(u
`−j
λ d̄i1) for 0 < j < `− i.

(4)
{
ri1,0r

2`+1−i
1,1 , r2`+1−i

1,0 ri1,1
}

leading to Xi,2`+1−i for 0 ≤ i ≤ `; see other

diagonals in Figure 6. On the 0-line we have a copy of 2̂ generated (under
transfers and the group action) by

r1,0Res
2
1(u

`
σs

`−i
2 )Res41(u

`
λd̄

i
1) ∈ E0,4`+2

2 (G/e)

In positive filtrations we have

•̂ ⊆ E2j+1,4`+2
2 generated by

ηεu
`
σs

`−i
2 Res42(a

j
λu

`−j
λ d̄i1)

∈ E2j+1,4`+2
2 (G/G′) for 0 ≤ j ≤ `

= η2j+1
ε u`−j

σ s`−i−j
2 Res42(u

`−j
λ d̄i1) for 0 ≤ j ≤ `− i.

Corollary 28. A subring of the slice E2-term. The ring E2kH(G/G′) is (see
Tables 3 and 4)

Z[δ1,Σ2,ε, ηε : ε = 0, 1]/
(
2ηε, δ

2
1 − Σ2,0Σ2,1, ηεΣ2,ε+1 + η1+εδ1

)
.

In particular the elements η0 and η1 are algebraically independent mod 2 with

γε(ηm0 ηn1 ) ∈ πm+nXm,n(G/G′) for m ≤ n.

The element (η0η1)
2 is the fixed point restriction of

u2σa
2
λd̄

2
1 ∈ E4,8

2 kH(G/G),

which has order 4, and the transfer of the former is twice the latter. The element
η0η1 is not in the image of Res42 and has trivial transfer in E2.

Proof. We detect this subring with the monomorphism

E2kH(G/G′)
r42 // E2kH(G′/G′)

ηε
� // aσr1,ε

Σ2,ε
� // u2σr

2
1,ε

δ1
� // u2σr1,0r1,1,

in which all the relations are transparent. �
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Corollary 29. Slices for KH. The slices of kH are

P s
s kH =

{ ∨
m≤s/4 Xm,s/2−m for s even and s ≥ 0

∗ otherwise

where Xm,n is as in Theorem 27. Here m can be any integer, and we still require
that m ≤ n.

Proof. Recall that KH is obtained from kH by inverting a certain element D ∈
π4ρ4kH described in Table 3. Thus KH is the homotopy colimit of the diagram

kH
D // Σ−4ρ4kH

D // Σ−8ρ4kH
D // · · ·

Desuspending by 4ρ4 converts slices to slices, so for even s we have

P s
sKH = lim

k→∞
Σ−4kρ4P s+16k

s+16k kH

= lim
k→∞

Σ−4kρ4

∨
0≤m≤s/4+8k

Xm,s/2+8k−m

= lim
k→∞

∨
0≤m≤s/4+4k

Xm−4k,s/2+4k−m

= lim
k→∞

∨
−4k≤m≤s/4

Xm,s/2−m

=
∨

m≤s/4

Xm,s/2−m. �

7. Generalities on differentials

Now we turn to differentials. Our starting point is the Slice Differentials Theorem
of [HHR, 9.9], which says that in the slice spectral sequence for MU ((G)) for an
arbitrary finite cyclic 2-group G of order g, the first nontrivial differential on various
powers of u2σ is

(30) dr(u
2k−1

2σ ) = a2
k

σ a2
k−1

ρ Ng
2 (r

G
2k−1) ∈ Er,r+2k(1−σ)−1

r MU ((G))(G/G),

where r = 1 + (2k − 1)g and ρ is the reduced regular representation of G. In
particular

d3(u2σ) = a3σr1 ∈ E3,4−2σ
3 MUR(G/G) for G = C2

d5(u2σ) = a3σaλd̄1 ∈ E5,6−2σ
5 MU ((G))(G/G) for G = C4

d7(u
2
2σ) = a7σr3 ∈ E7,10−4σ

3 MUR(G/G) for G = C2.

(31)

Now, as before, let G = C4 and G′ = C2 ⊆ G. We need to translate the d3 above
in the slice spectral sequence for MUR into a statement about the one for kH. We
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have an equivariant multiplication map m of G′-spectra

MU ((G))

MUR
ηL // MUR ∧MUR

m // MUR

rG
′

1
� // rG1,0 + rG1,1

� // rG
′

1

a3σ(r
G
1,0 + rG1,1)

� // a3σr
G′

1

rG
′

3
� //

(
5rG1,0r

G
1,1(r

G
1,0 + rG1,1)

+(rG1,1)
3 mod (rG2 , r

G
3 )

)
� // rG

′

3

where the elements lie in πG′

ρ2
(·)(G′/G′). In the slice spectral sequence for MU ((G)),

d3(u2σ) and d7(u
2
2σ) must be G-invariant since u2σ is, and they must map respec-

tively to a3σr
G′

1 and a7σr
G′

3 , so we have

d3(u2σ2
) = a3σ2

(rG1,0 + rG1,1) = a2σ2
(η0 + η1)

d7(u
2
2σ2

) = a7σ2

(
5rG1,0r

G
1,1(r

G
1,0 + rG1,1) + (rG1,1)

3 + · · ·
)

= a7σ2
(rG1,0)

3 + · · · since a3σ2
(rG1,0 + rG1,1) = 0 in E4

and similarly for kH where the missing terms in d7(u
2
2σ2

) vanish. Pulling back along

the isomorphism r42 and the monomorphism Res42 leads to the following.

Proposition 32. The differentials on uλ and u2σ. The following differentials
occur in the slice spectral sequence for kH.

d3(uλ) = aλη

d3(Res
4
2(uλ)) = Res42(aλ)(η0 + η1)

d3(uσRes
4
2(uλ)) = uσRes

4
2(aλ)(η0 + η1) = η20η1 + η0η

2
1

d3(uλη) = aλη
2 = a2λTr

4
2(uσs2,ε)

d3(Res
4
2(uλ)ηε) = Res42(aλ)(η0 + η1)ηε

d3(uσRes
4
2(uλ)ηε) = uσRes

4
2(aλ)(η0 + η1)ηε

= (η0η1)
2 + η0η1η

2
ε

d5(u2σ) = a3σaλd̄1

d5(u
2
λ) = a2λaσuλd̄1 = aλuλf1

d7(Res
4
2(uλ)

2) = Res42(a
2
λ)η

3
0 .

The elements uσ, u
2
2σ and Res42(uλ)

2 are permanent cycles. The first satisfies

Tr42(uσRes
4
2(x)) = aσf1x ∈ π1+|x|kH(G/G).

Since the slice filtrations of uσRes
4
2(x) and its transfer exceed those of x by 0 and

4 respectively, we have an exotic Mackey functor extension.

Proof. The differentials were established above.
Note that uσ ∈ E0,1−σ

2 (G/G′) since the maximal subgroup for which the sign
representation σ is oriented is G′, on which it is restricts to the trivial representation
of degree 1. This group depends only on the restriction of the RO(G)-grading to
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G′, and the isomorphism extends to differentials as well. This means that uσ is a
place holder corresponding to the permanent cycle 1 ∈ E0,0

2 (G/G′).Proof needed for

Tr42(uσ) As remarked above, we lose no information by inverting the class D, which is
divisible by d̄1. It is shown in [HHR, 9.11] that inverting the latter makes u2

2σ a
permanent cycle. �

8. kH as a C2-spectrum

It is helpful to explore the restriction of the slice spectral sequence to G′, for
which the Z-brigraded portion E2(G

′/G′) is the isomorphic image of the ring of
Corollary 28. In the following we identify Σ2, δ1 and r1 with their images under
r42. From the differentials of (31) we get

d3(Σ2,ε) = η3ε + η2ε η1+ε

d3(δ1) = η20η1 + η0η
2
1

d7(δ
2
1) = d7(u

2
2σ)r

2
1,0r

2
1,1 = a7σr

G′

3 r21,0r
2
1,1

= a7σ(5r
2
1γ(r1) + 5r1,0r

2
1,1 + γ(r1)

3)r21,0r
2
1,1.

The d3s above make all monomials in η0 and η1 of any given degree ≥ 3 the same
in E4(G/G′) and E4(G

′/G′), so d7(δ
2
1) = η70 . Similar calculations show that

d7(Σ
2
2,ε) = η70 .

This leads to the following, for which Figure 4 is a visual aid.

Theorem 33. The slice spectral sequence for kH as a C2-spectrum. Using
the notation of Table 2 and Definition 14, we have

E∗,∗
2 (G′/e) = Z[r1,0, r1,1] with r1,ε ∈ E0,2

2 (G′/e)

E∗,∗
2 (G′/G′) = Z[δ1,Σ2,ε, ηε : ε = 0, 1]/(

2ηε, δ
2
1 − Σ2,0Σ2,1, ηεΣ2,ε+1 + η1+εδ1

)
,

so

Es,t
2 =



2 ⊕
⊕

` 2̃ for (s, t) = (0, 4`) with ` ≥ 0⊕
`+1 2̃ for (s, t) = (0, 4`+ 2) with ` ≥ 0

• ⊕
⊕

u+` •̃ for (s, t) = (2u, 4`+ 4u) with ` ≥ 0 and u > 0⊕
u+` •̃ for (s, t) = (2u− 1, 4`+ 4u− 2) with ` ≥ 0 and u > 0

0 otherwise.

The first differentials are determined by

d3(Σ2,ε) = η2ε (η0 + η1) and d3(δ1) = η0η1(η0 + η1)
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resulting in

Es,t
4 =



2 ⊕
⊕

` 2̃ for (s, t) = (0, 4`) with ` ≥ 0 and ` even

⊕
⊕

`
˜ for (s, t) = (0, 4`) with ` ≥ 0 and ` odd⊕

`+1 2̃ for (s, t) = (0, 4`+ 2) with ` ≥ 0

• ⊕
⊕

1+` •̃ for (s, t) = (2, 4`+ 4) with ` ≥ 0 even⊕
1+` •̃ for (s, t) = (1, 4`+ 2) with ` ≥ 0 even

• for (s, t) = (s, 4`+ 2s) with s ≥ 3 and ` ≥ 0 even

0 otherwise.

There is a second set of differentials determined by

d7(Σ2,ε) = d7(δ1) = η70

resulting in

Es,t
8 = Es,t

∞ =



2 ⊕
⊕

` 2̃ for (s, t) = (0, 4`) with ` ≥ 0 and ` divisible by 4

⊕
⊕

` 2̃ for (s, t) = (0, 4`) with ` ≥ 0 and ` ≡ 2 mod 4

⊕
⊕

`
˜ for (s, t) = (0, 4`) with ` ≥ 0 and ` odd⊕

`+1 2̃ for (s, t) = (0, 4`+ 2) with ` ≥ 0

• ⊕
⊕

1+` •̃ for (s, t) = (2, 4`+ 4) with ` ≥ 0 divisible by 4⊕
1+` •̃ for (s, t) = (2, 4`+ 4) with ` ≥ 0 and ` ≡ 2 mod 4⊕
1+` •̃ for (s, t) = (1, 4`+ 2) with ` ≥ 0 divisble by 4

• ⊕
⊕

` •̃ for (s, t) = (1, 4`+ 2) with ` ≥ 0 and ` ≡ 2 mod 4

• for (s, t) = (s, 4`+ 2s) with 3 ≤ s ≤ 6 and ` ≥ 0

divisible by 4

0 otherwise.

Corollary 34. Some nontrivial permanent cycles. The following elements in
Es,8i+2s

2 kH(G/G′) and their transfers are nontrivial permanent cycles:

• Σ2i−j
2,ε δj1 for 0 ≤ j ≤ 2i (4i + 1 elements of infinite order including δ2i1 ), i

even and s = 0.
• ηεΣ

2i−j
2,ε δj1 for 0 ≤ j < 2i and ηεδ

2i
1 (4i+ 2 elements or order 2) for i even

and s = 1.
• η2εΣ

2i−j
2,ε δj1 for 0 ≤ j < 2i and δ2i1

{
η20 , η0η1, η

2
1

}
(4i + 3 elements or order

2) for i even and s = 2.
• ηs0δ

2i
1 for 3 ≤ s ≤ 6 (4 elements or order 2) and i even.

• Σ2i−j
2,ε δj1 + δ2i1 for 0 ≤ j ≤ 2i (4i + 1 elements of infinite order including

2δ2i1 ), i odd and s = 0.

• ηεΣ
2i−j
2,ε δj1+δ2i1 for 0 ≤ j ≤ 2i−1 and η0δ

2i−1
1 (Σ2,1+δ1) = η1δ

2i−1
1 (Σ2,0+δ1)

(4i+ 1 elements of order 2), i odd and s = 1.

• η2εΣ
2i−j
2,ε δj1+δ2i1 for 0 ≤ j ≤ 2i−1, η20δ

2i−1
1 (Σ2,1+δ1) = η0η1δ

2i−1
1 (Σ2,0+δ1)

and η0η1δ
2i−1
1 (Σ2,1 + δ1) = η21δ

2i−1
1 (Σ2,0 + δ1) (4i+ 2 elements of order 2)

for i odd and s = 2.
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Figure 4. The slice spectral sequence for kH as a C2-spectrum.
The Mackey functor symbols are as in Table 2, The C4-structure
of the Mackey functors is not indicated here. In each bidegree we
have a direct sum of the indicated number of the indicated Mackey
functor. Each d3 has maximal rank, leaving a cokernel of rank 1,
and each d7 has rank 1. Blue lines indicate exotic transfers, which
also have maximal rank.

In E0,8i+4
2 kH(G/G′) we have 2Σ2i+1−j

2,ε δj1 for 0 ≤ j ≤ 2i and 2δj1, 4i+3 elements

of infinite order, each in the image of the transfer Tr21.

9. The first differentials over C4

Theorem 27 lists elements in the slice spectral sequence for kH over C4 in terms
of

r1, s2, d̄1; η, aσ, aλ; uλ, uσ, and u2σ.

All but the u’s are permanent cycles, and the action of d3 on uλ, uσ and u2σ is
described above in Proposition 32.

Proposition 35. d3 on elements in Theorem 27. We have the following d3s,
subject to the conditions on i, j, k and ` of Theorem 27:
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• On X2`,2`:

d3(a
j
λu

`
2σu

2`−j
λ d̄2`1 ) =


aj+1
λ ηu`

2σu
2`−j−1
λ d̄2`1

∈ π∗X2`,2`+1(G/G)
for j odd

0 for j even

d3(a
2k
σ a2`λ u`−k

2σ d̄2`1 ) = 0

• On X2`+1,2`+1:

d3(δ
2`+1
1 ) = ηu2`+1

σ Res42(aλu
2`
λ d̄2`+1

1 )

∈ π∗X2`+1,2`+2(G/G′)

d3(u
2`+1
σ Res42(a

j
λu

2`+1−j
λ d̄2`+1

1 ))

=


ηu2`+1

σ Res42(a
j+1
λ u2`−j

λ d̄2`+1
1 )

∈ π∗X2`+1,2`+2(G/G′)
for j even

0 for j odd

d3(aσa
j
λu

2`
σ u2`+1−j

λ d̄2`+1
1 ) =


ηaσa

j+1
λ u2`

σ u2`−j
λ d̄2`+1

1

∈ π∗X2`+1,2`+2(G/G)
for j even

0 for j odd

d3(a
2k+1
σ a2`+1

λ u`−k
2σ d̄2`+1

1 ) = 0

• On Xi,2`−i:

d3(u
`
σs

`−i
2 Res42(u

`
λd̄

i
1)) =


η3u`−1

σ s`−i−1
2 Res42(u

`−1
λ d̄i1)

∈ π∗Xi,2`+1−i(G/G′)
for ` odd

0 for ` even

d3(η
2ju`−j

σ s`−i−j
2 Res42(u

`−j
λ d̄i1)) =


η2j+1u`−j

σ s`−i−j
2 Res42(aλu

`−j−1
λ d̄i1)

∈ π∗Xi,2`+1−i(G/G′)
for `− j odd

0 for `− j even

• On Xi,2`+1−i:

d3(r1Res
2
1(u

`
σs

`−i
2 )Res41(u

`
λd̄

i
1)) = 0

d3(η
2j+1u`−j

σ s`−i−j
2 Res42(u

`−j
λ d̄i1)) =


η2j+2u`−j

σ s`−i−j
2 Res42(aλu

`−j−1
λ d̄i1)

∈ π∗Xi,2`+2−i(G/G′)
for `− j odd

0 for `− j even

Note that in each case the first index of X is unchanged by the differential, and
the second one is increased by one. Since Xm,n is a summand of the 2(m + n)th
slice, each d3 raises the slice degree by 2 as expected.
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Figure 5. The d3s on the slice summands X4,n for n ≥ 4. The
symbols are defined in Table 1.
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Figure 6. The d3s on the slice summands X5,n for n ≥ 5.

These differentials are illustrated in Figures 5 and 6. In order to pass to E4 we
need the following exact sequences of Mackey functors.

0 // • // ◦ d3 // •̂ // • // 0

0 // ̂ // 2̂
d3 // •̂ // 0

0 // • d3 // •̂ // H // 0

0 // // 2
d3 // •̂ // H // 0

The resulting subquotients of E4 are shown in Figures 7 and 8 and described
below in Theorem 36. In the latter the slice summands are organized as shown in
the Figures rather than by orbit type as in Theorem 27.

Theorem 36. The slice E4-term for kH. The elements of Theorem 27 surviving
to E4, which live in the appropriate subquotients of π∗Xm,n, are as follows.
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Figure 7. The subquotient of the slice E4-term for kH for the
slice summands X4,n for n ≥ 4. Exotic transfers are shown in
blue.
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Figure 8. The subquotient of the slice E4-term for kH for the
slice summands X5,n for n ≥ 5. Exotic restrictions and transfers
are shown in green and blue respectively.

(1) In π∗X2`,2` (see the leftmost diagonal in Figure 7), on the 0-line we still

have a copy of 2 generated under fixed point restrictions by ∆`
1 ∈ E0,8`

4 . In
positive filtrations we have

◦ ⊆ E2j,8`
4 generated by

ajλu
`
2σu

2`−j
λ d̄2`1 ∈ E2j,8`

4 (G/G) for j even and 0 < j ≤ 2`,

2ajλu
`
2σu

2`−j
λ d̄2`1 = a2σa

j−1
λ u`+1

2σ u2`−j−1
λ d̄2`1

∈ E2j,8`
4 (G/G) for j odd and 0 < j ≤ 2` and

• ⊆ E2k+2`,8`
4 generated by

a2kσ a2`λ u`−k
2σ d̄2`1 ∈ E2j+2k,8`

4 (G/G) for 0 < k ≤ `.
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(2) In π∗X2`,2`+1 (see the second leftmost diagonal in Figure 7), in filtration 0

we have 2̂, generated (under transfers and the group action) by

r1Res
2
1(u

2`
σ Res41(u

2`
λ d̄2`1 ) ∈ E0,8`+2

2 (G/e).

In positive filtrations we have

•̂ ⊆ E1,8`+2
4 generated (under transfers and

the group action) by

ηu2`
σ Res42(uλd̄1)

2` = E1,8`+2
4 (G/G′)

• ⊆ E4k+1,8`+2
4 for 0 < k ≤ ` generated by

x = η4k+1u2`−2k
σ Res42(uλd̄1)

2`−2k

∈ E4k+1,8`+2
4 (G/G′) with (1− γ)x = Tr42(x) = 0.

(3) In π∗X2`+1,2`+1 (see the leftmost diagonal in Figure 8), on the 0-line we

have a copy of generated under fixed point ∆
(2`+1)/2
1 ∈ E0,8`+4

4 . In positive
filtrations we have

• ⊆ E2j,8`+4
2 generated by

u2`+1
σ Res42(a

j
λu

2`+1−j
λ d̄2`+1

1 )

∈ E2j,8`+4
2 (G/G′) for 0 < j ≤ 2`+ 1,

• ⊆ E2j+1,8`+4
2 generated by

aσa
j
λu

2`
σ u2`+1−j

λ d̄2`+1
1 ∈ E2j+2k,8`+4

2 (G/G) for 0 ≤ j ≤ 2`+ 1 and

• ⊆ E2k+4`+3,8`+4
2 generated by

a2k+1
σ a2`+1

λ u`−k
2σ d̄2`+1

1 ∈ E2k+4`+2,8`+4
2 (G/G) for 0 < k ≤ 2`+ 1.

(4) In π∗X2`+1,2`+2 (see the second leftmost diagonal in Figure 8), in filtration

0 we have 2̂, generated (under transfers and the group action) by

r1Res
2
1(u

2`+1
σ Res41(u

2`+1
λ d̄2`+1

1 ) ∈ E0,8`+6
4 (G/e).

In positive filtrations we have

H ⊆ E04k+3,8`+6
4 for 0 ≤ k ≤ `

generated under transfer by

x = η4k+3∆`−k
1 ∈ E4k+3,8`+6

4 (G/G′) with (1− γ)x = 0.

(5) In π∗Xm,m+i for i ≥ 2 (see the rest of Figures 7 and 8), in filtration 0 we
have

2̂ ⊆ E0,4m+4j+2
4 generated under transfers

and group action by

r1Res
2
1(u

m+j
σ sj2)Res

4
1(u

m+j
λ d̄m1 )

∈ E0,4m+4j+2
4 (G/e) for j ≥ 0̂ ⊆ E0,8`+4
4 generated under transfers

and group action by

Res21(u
2`+1
σ s2`+1−m

2 )Res41(u
2`+1
λ d̄m1 )
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∈ E0,8`+4
4 (G/e) for ` ≥ m/2

2̂ ⊆ E0,8`
4 generated under transfers and restriction

and group action by

x8`,m = Σ2`−m
2,0 δm1 + `δ2`1

where Σ2,ε = uρ2s2,ε and δ1 = uρ2Res
4
2(d̄1)

∈ E0,8`
4 (G/G′) for 0 ≤ m ≤ 2`− 1.

In positive filtrations we have

•̂ ⊆ E2,8`+4
4 generated under transfers

and group action by

η20Res
4
2(∆

`
1) = η20δ

2`
1 = η20u

2`
σ Res42(uλd̄1)

2`

∈ E2,8`+4
4 (G/G′) and

•̂ ⊆ Es,8`+2s
4 generated under transfers

and group action by

ηsεx8`,m ∈ Es,8`+2s
4 (G/G′) for s = 1, 2 and 0 ≤ m ≤ 2`− 1.

Proposition 37. Some nontrivial permanent cycles. The elements listed in
Theorem 36(5) other than η2ε δ

2`
1 are all nontrivial permanent cycles.

Proof. Each such element is either in the image of E0,∗
4 (G/e) under the transfer

and therefore a nontrivial permanent cyle, or it is one of the ones listed in Corollary
34. �

In subsequent discussions and charts, starting with Figure 13, we will omit the
elements Proposition 37.

Analogous statements can be made about the slice spectral sequence for KH.
Each of its slices is a certain infinite wedge spelled out in Corollary 29. Their
homotopy groups are determined by the chain complex calculations of Section 4
and illustrated in Figures 2 and 3. Analogs of Figures 5–8 are shown in Figures
9–12. In each figure, exotic transfers and restrictions are indicated by blue and
green lines respsctively. As in the kH case, most of the elements shown in this
chart can be ignored for the purpose of calculating higher differentials.

The resulting reduced E4 for KH is shown in Figure 14. The information shown
there is very useful for computing differentials and extensions. The periodicity
theorem tells us that πnKH and πn−32KH are isomorphic. For 0 ≤ n < 32 these
groups appear in the first and third quadrants respectively, and the information
visible in the spectral sequence can be quite different.

For example, we see that π0KH = 2 while π−32KH has a subgroup isomorphic
to . The quotient 2/ is isomorphic to ◦. This leads to the exotic restrictions and
transfer in dimension −32 shown in Figure 14. Information that is transparent in
dimension 0 implies subtle information in dimension −32. Conversely, we see easily
that π−4KH = 2̇ while π28KH has a quotient isomorphic to . This leads to the
“long transfer” in dimension 28.
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Figure 9. The d3s on the slices X−4,n for n ≥ −4.
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Figure 10. The d3s on the slices X−5,n for n ≥ −5.
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Figure 11. The subquotient of the slice E4-term for kH for the
slice summands X−4,n for n ≥ −4.
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Figure 12. The subquotient of the slice E4-term for kH for the
slice summands X−5,n for n ≥ −5.

This technique will be used repeatedly in the proof of Theorem 40 below.
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10. Higher differentials and exotic Mackey functor extensions

Theorem 38. The d5s, d7s and d11s in the slice spectral sequence for kH.
The E4-term of the slice spectral sequence for kH with elements of Proposition 37
removed (shown in Figure 13) we have

ηε ∈ E1,2
4 (G/G′) for ε = 0, 1 with Tr42(ηε) = η ∈ E1,4

4 (G/G)

f1 ∈ E3,4
4 (G/G)

η2ε , η0η1 ∈ E2,4
4 (G/G′) with Tr42(η

2
ε ) = η2 and Tr42(η0η1) = f2

1

η30 = η20η1 = η0η
2
1 = η31

∈ E3,6
4 (G/G′) with Tr42(η

3
0) = x3 ∈ E3,6

4 (G/G) and η3 = 0

ν ∈ E1,4
4 (G/G) with Res42(ν) = η30, 2ν = x3 and Res42(ν

2) = η60
x4 ∈ E4,8

4 (G/G) with Res42(x4) = η40
y4 = 2δ1 = Tr42(r1,0r1,1)

∈ E0,4
4 (G/G′) with Tr42(y4) = 0

∆1 ∈ E0,8
4 (G/G);

see Tables 3 and 4 for more information. All are torsion free under multiplication
by x4 or its restriction η40, except

η0 + η1, η
2
ε + η0η1, y4 and 4∆1,

which are killed by it. Thus the following are linearly independent up to 2-torsion:{
xi
4

{
x3, ∆

j
1, f1∆

j
1, ν∆

j
1, ν

2∆j
1, f

j+2
1 : j ≥ 0

}
: i ≥ 0

}
∪
{
η4i0

{
η0, η

2
0

}
: i ≥ 0

}
∪
{
Res42(∆1)

i
{
y4, ηε, η

2
ε

}
: i ≥ 0

}
.

There are multiplicative relations

f1ν = 2x4, ν
2x4 = f2

1∆1, ν
3 = 0 and y4ηε = 0.

There are differentials

d5(x
2i+1
4 f j

1 ) = x2i
4 f j+3

1 for i, j ≥ 0

d5(∆
2i+1
1 xj

4) = ∆2i
1 νxj+1

4 = ∆2i
1 xj

4〈ν, f2
1 , f1〉

d5(f1∆
2i+1
1 xj

4) = 2∆2i
1 x

2j
4

d7(2∆
2i+1
1 xj

4) = ∆2i
1 x3x

j+1
4

d7(∆
4i+2
1 xj

4) = j∆4i+1
1 x3x

j+1
4

d11(∆
4i+1
1 x3x

2j
4 ) = ∆4i

1 f2
1x

2j+2
4

Similar statements can be made about the third quadrant of the slice spectral
sequence for KH. They are indicated in Figure 14.

Proof. The structure of the reduced (meaning the elements of Proposition 37 are
removed) E4-term can be read off from previous calculations.

We have

2x4 = 2a2λu2σ d̄
2
1

= a2σaλuλd̄
2
1 since a2σuλ = 2aλu2σ

d5(x4) = a2λd̄
2
1d5(u2σ)

= a2λd̄
2
1a

3
σaλd̄1 by Proposition 32

= f3
1



THE SLICE SPECTRAL SEQUENCE FOR THE C4 ANALOG OF REAL K-THEORY 41

d5(∆1) = d5(u
2
λ)u2σ d̄

2
1 + u2

λd5(u2σ)d̄
2
1

= aλuλf1u2σ d̄
2
1 + a3σaλu

2
λd̄

3
1

= aλuλf1u2σ d̄
2
1 + 2aσa

2
λuλu2σ d̄

3
1 since a2σuλ = 2aλu2σ

= aλuλf1u2σ d̄
2
1 since 2aσ = 0

= νx4 = 〈ν, f2
1 , f1〉

d5(f1∆1) = aλuλf
2
1u2σ d̄

2
1

= a2σa
3
λuλu2σ d̄

4
1

= 2x2
4

d7(2∆1) = d7(Tr
4
2(Res

4
2(∆1))) = Tr42(d7(δ

2
1))

= Tr42(η
7
0) by Theorem 33

In order to evaluate this transfer note that η40 = Res42(x4), so

Tr42(η
7
0) = Tr42(η

3
0Res

4
2(x4)) = Tr42(η

3
0)x4 = x3x4

and d7(2∆1) = x3x4.
Since Res42(∆1) = δ21 , we have

Res42(νx4) = Res42(ν)η
4
0

= Res42(d5(∆1))

= dr(Res
4
2(∆1)) for suitable r

= dr(δ
2
1)

= η70 for r = 7.

It follows that

η40(Res
4
2(ν)− η30) = 0.

Since multiplication by η40 maps E3,6
4 (G/G′) isomorphically to E7,14

4 (G/G′), we
conclude that

(39) Res42(ν) = η30 ,

which implies that 2ν = x3 and Res42(ν
2) = η60 .

Now consider the differential on ∆2
1. For suitable r we have

dr(∆
2
1) = 2∆1d5(∆1)

= 2∆1νx4

= ∆1x3x4

so d7(∆
2
1) = ∆1x3x4.

Heuristically we have Is this rigorous

enough?
d(∆2

1x4) = d(∆2
1)x4 +∆2

1d(x4)

= ∆1x3x
2
4 +∆2

1f
3
1

= ∆1x3x
2
4 +∆1f1(∆1f

2
1 )

= ∆1x3x
2
4 +∆1f1(ν

2x4)

= ∆1x3x
2
4 +∆1(f1ν)νx4

= ∆1x3x
2
4 +∆1(2x4)νx4
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= 2∆1x3x
2
4

= 0.

For the d11 we have

dr(∆1x3) = dr(Tr
4
2(Res

4
2(∆1ν)))

= Tr42(Res
4
2(d5(∆1ν)))

= Tr42(Res
4
2(ν

2x4))

= Tr42(η
10
0 )

= Tr42(η0η1Res
4
2(x

2
4))

= Tr42(η0η1)x
2
4

= f2
1x

2
4

All other d5s and d7s are formal consequences of the above. �

Theorem 40. Higher differentials and Mackey functor extensions in the
slice spectral sequence for kH. In addition to the differentials and Mackey
functor extensions of Theorem 38 we have

in dimension 9: Tr42(δ
8i+2
1 (η0 + η1)) = f1∆

4i
1 x2

4

in dimension 13: Tr42(δ
4i+2
1 η50x

j
4) = f1∆

2i
1 xj+1

4

in dimension 17: Res42(f1∆
4i+2
1 x2j

4 ) = δ8i+2
1 η9+8j

0

in dimension 17: d13(f1∆
4i+1
1 x2j

4 ) = ∆4i
1 x2j+4

4

in dimension 18: d13(f
2
1∆

4i+1
1 x2j

4 ) = f1x
4
4∆

4i
1 x2j

4

in dimension 21: Tr42(δ
8i+4
1 η50x

j
4) = f1∆

4i+2
1 xj+1

4

in dimension 22: Tr42(η
6
0δ

8i+4
1 ) = f2

1x4∆
4i+2
1

in dimension 28: Tr42(δ
8i+7
1 ) = x3

4∆
4i+2
1

in dimension 38: d13(ν
2∆4i+3

1 x2j
4 ) = f1∆

4i+2
1 x2j+3

4

where i, j ≥ 0 and the indicated dimension is the one where the phenomenon first
occurs, namely the one for i = j = 0.

∆4
1 is a permanent cycle and there are no other differentials or exotic Mackey

functor extensions.

Proof. In dimensions 8 and 9 we have exact sequences

E3,12
7

// E3,12
5

d5 // E8,16
5

// E8,16
7

// 0

0 • ◦ N

and

0 // E3,12
9

// E1,10
7

d7 // E8,16
7

// E8,16
9

// 0

N •̂ N •
From Figure 14 we see that π−23KH = ◦, so the same must be true of π9KH. This
implies the exotic transfer.

In dimension 13 the exotic transfer is required to give a differential leading to
π13KH = π−19KH = 0.
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The two statements in dimension 17 are equivalent since

d7(δ
2
1η

9
0) = Res42(x

4
4).

The target of the long differential is the square of ε ∈ π8KH(G/G), which has
filtration 8. The corresponding element in π−24 has filtration −4, so its product
with ε would have filtration 4 and is therefore 0. Hence ε2 must be hit by a
differential, and this d13 is the only possibility.

The element x4∆
2
1 in dimension 20 is the image of κ ∈ π20S

0. It product with
the exotic transfer in dimension 2 gives the one in dimension 22. Proofs needed

for the restThe Periodicity Theorem of [HHR, 9.16] says that ∆4
1 is a permanent cycle

inducing an isomorphism in homotopy. The absence of higher differentials and
extensions can be established by careful inspection illustrated in Corollary 41.

Some of the other statements can be proved by comparison with third quadrant
calculations in the slice spectral sequence for KH which we have not described yet,
but which is illustrated in Figure 14.

In dimension 9, we find that π−23KH = E−1,−24
∞ = ◦, so π9 must have the same

value.
In dimension 13 the indicated exotic transfer is need to get a torsion free π12.

In the dimension −20 we need a d13 to achieve the same result. ?????
�
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Figure 14. The reduced E4-term of the slice spectral sequence for the periodic spectrum KH. Differentials are shown
in red. Exotic transfers and restrictions are shown in blue and green respectively.
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Figure 15. The reduced E∞-term of the slice spectral sequence for KH. The exotic Mackey functor extensions lead
to the Mackey functors shown in blue in the second and fourth quadrants.

Corollary 41. The E∞-term of the slice spectral sequence for KH. The surviving elements in the spectral sequence for KH

are shown in Figure 15.
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Figure 16. The 2008 poster. The first and third quadrants show
E4(G/G) with the elements of Prop. 37 excluded. The second
quadrant indicates d3s as in Figures 5 and 6. The fourth quadrant
indicates comparable d3s in the third quadrant of the slice spectral
sequence.
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