THE KLEIN FOUR SLICES OF $\Sigma^n HF_2$

B. GUILLOU AND C. YARNALL

Abstract. We describe the slices of positive integral suspensions of the equivariant Eilenberg-Mac Lane spectrum HF_2 for the constant Mackey functor over the Klein four-group $C_2 \times C_2$.

CONTENTS

1. Introduction 1
2. Background 3
 2.1. $(C_2 \times C_2)$-representations 3
 2.2. Mackey functors 4
 2.3. Suspension, transfers, and restrictions 5
 2.4. Anderson duality 5
 2.5. The slice filtration 6
 2.6. Review of Holler-Kriz 7
3. Review of $G = C_2$ 8
 3.1. The main players 8
 3.2. The slice tower for $\Sigma^n HF_2$ 10
4. Mackey functors for $\mathcal{K} = C_2 \times C_2$ 11
5. The slices of $\Sigma^n H_K F_2$ 15
 5.1. The n-slice 15
 5.2. The $4k$-slices 16
 5.3. The $(4k + 2)$-slices 19
6. The slice towers of $\Sigma^n H_K F_2$ 20
7. Homotopy Mackey functor computations 25
8. The slice spectral sequence 27
Appendix: Mackey functors 33
References 34

1. Introduction

The slice filtration is a filtration of equivariant spectra developed by Hill, Hopkins, and Ravenel, as a generalization of Dugger’s filtration [D], in their solution to the Kervaire invariant-one problem [HHR]. It is an equivariant analogue of the Postnikov tower and was modeled on the motivic filtration of Voevodsky [V].

1991 Mathematics Subject Classification. Primary 55N91, 55P91; 55Q91
Secondary 55T99.
B. Guillou was supported by NSF grant DMS-1710379.
Since its inception, there have been a few reformulations and new understandings of the structure of the slice filtration. Some properties and useful results in this setting are summarized in subsection 2.5. In this paper, we use the regular slice filtration (cf. [U], [HY]) on equivariant spectra and note that this filtration differs from the original filtration from [HHR] by a shift by one.

Let G be a finite group and let Sp^G be the category of genuine G-spectra.

Definition 1.1. Let $\tau^G_{\geq n} \subseteq \text{Sp}^G$ be the localizing subcategory generated by G-spectra of the form $\Sigma^\infty G/H \wedge S^{k \rho_H}$, where $H \subseteq G$, ρ_H is the regular representation of H and $k \cdot |H| \geq n$. We write $X \geq n$ to mean that $X \in \tau^G_{\geq n}$.

We use $P_{n-1}(-)$ to denote the localization functor associated to $\tau^G_{\geq n}$. There are natural transformations $P_{n}(-) \rightarrow P_{n-1}(-)$ that give the slice tower of X

$$\cdots \rightarrow P_{n+1}X \rightarrow P_{n}X \rightarrow P_{n-1}X \rightarrow \ldots, $$

and the fiber at each level

$P_{n}X \rightarrow P_{n}X \rightarrow P_{n-1}X$

is known as the n-slice of X.

While in the nonequivariant setting the relationship between the Postnikov tower of a spectrum and the spectrum’s homotopy groups is clear, there is a much more complicated story for homotopy groups and the slice tower when working equivariantly. Furthermore, such homotopy groups enjoy a richer structure. For a G-spectrum X, the homotopy groups $\pi_n(X^H)$, as H varies over the subgroups of G, define a G-Mackey functor. An underline will denote a Mackey functor, and we will display such functors M according to their Lewis diagrams. The general form of such diagrams for $G = C_2$ and $G = C_2 \times C_2$ are displayed below.1

\[\begin{array}{ccc}
M(C_2) & \rightarrow & M(C_2 \times C_2) \\
\downarrow & & \downarrow \\
M(e) & \rightarrow & M(L)
\end{array}\]

\[\begin{array}{ccc}
M(L) & \rightarrow & M(D) \\
\downarrow & & \downarrow \\
M(e) & \rightarrow & M(R)
\end{array}\]

Here $L, D,$ and R are the left, diagonal, and right cyclic subgroups of $C_2 \times C_2$ of order two. We have not drawn in the Weyl group actions on the intermediate groups or the G-action on $M(e)$. The maps pointing down are called restriction, and the maps pointing up are called transfers.

Associated to every G-Mackey functor M, there is an Eilenberg-MacLane spectrum HM. While HM is always a 0-slice, and thus has a trivial slice tower, suspensions of Eilenberg-MacLane spectra produce interesting slices and corresponding towers. For instance, when $G = C_p^n$, the slices of $\Sigma^n H\mathbb{Z}$ and $\Sigma^n \lambda H\mathbb{Z}$, where \mathbb{Z} is the constant Mackey functor at \mathbb{Z} and λ is an irreducible C_p^n-representation, were presented in [Y] and [HHR2], respectively.

We will primarily work with the constant functor F_2 for the Klein four-group $C_2 \times C_2$ (which we will often denote by K). This Mackey functor takes on the value 1We write $M(L)$ for what would be typically written as $M((C_2 \times C_2)/L)$.
THE KLEIN FOUR SLICES OF $\Sigma^n H\mathbb{F}_2$

\mathbb{F}_2 at each subgroup. The restriction maps are all the identity, and the transfers are all zero. In this paper we present the slices of $\Sigma^n H\mathbb{F}_2$ for the Klein four-group $C_2 \times C_2$ and $n \geq 0$. A summary of our main results is as follows:

Main Result. When $G = C_2 \times C_2$ and $n \geq 0$, all nontrivial slices of $\Sigma^n H\mathbb{F}_2$ are given by:

$$P_i^j(X) = \Sigma^V H\mathcal{M}, \quad n \leq i \leq 4n - 12$$

where $|V| = i$ and $i \equiv 0 \pmod{4}$, $i \equiv 2 \pmod{4}$, or $i = n$. The precise representations V and Mackey functors \mathcal{M} are completely described in Proposition 5.5, Theorem 5.6, and Proposition 5.12.

The paper is organized as follows. We begin with some background material in section 2. In section 3, we review results from [HHR] for the case of $H C_2 \mathbb{F}_2$. We present the relevant K-Mackey functors in section 4. Our main results, which describe all of the slices of $\Sigma^n H\mathbb{F}_2$ are given in section 5. In section 6, we present the first few slice towers (up to $n = 8$). The homotopy Mackey functors of the slices are computed in section 7. Finally, in section 8, we display a few examples of the slice spectral sequence for $\Sigma^n H\mathbb{F}_2$. For convenience, we also list the important K-Mackey functors in the section 8.

We are grateful to John Greenlees, Mike Hill, Doug Ravenel, Nicolas Ricka, and Dylan Wilson for some helpful conversations. We would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme “Equivariant and motivic homotopy theory”, where work on this paper was completed.

2. Background

2.1. $(C_2 \times C_2)$-representations. Recall that the real representation ring for the group $K = C_2 \times C_2$ is

$$RO(K) \cong \mathbb{Z}\{1, \alpha_{1,0}, \alpha_{1,1}, \alpha_{0,1}\}$$

where 1 is the trivial one-dimensional representation and the other representations are defined by

$$\mathbb{Z}/2 \times \mathbb{Z}/2 \xrightarrow{\alpha_{i,j}} \mathbb{Z}/2 \xrightarrow{\sigma} GL_1(\mathbb{R})$$

$$(k,n) \mapsto ik + jn.$$

Thus $\alpha_{1,0}$ is the projection onto the left factor. To avoid cluttering notation, we prefer to write $\alpha = \alpha_{1,0}$, $\beta = \alpha_{0,1}$, $\gamma = \alpha_{1,1}$. We denote by ρ or ρ_K the regular representation, and we have

$$\rho = 1 + \alpha + \beta + \gamma$$

in $RO(K)$. The left, diagonal, and right cyclic subgroups of K will be denoted by L, D, and R, respectively. We have

$$L = \ker \beta, \quad D = \ker \gamma, \quad R = \ker \alpha.$$

It will often be important to consider restriction to the cyclic subgroups. Given that $RO(C_2) \cong \mathbb{Z}\{1, \sigma\}$, the restrictions of representations are given by

$$RO(K) \xrightarrow{\iota^*} RO(C_2),$$

$$\iota^*_L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \iota^*_D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \iota^*_R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

In particular, we have $\iota^*(\rho_K) = 2\rho_{C_2}$ in $RO(C_2)$.
Since the subgroups $H = L, D, R \leq K$ are all normal, we get an induced action of $C_2 \cong K/H$ on the H-fixed points of any K-representation. These fixed point homomorphisms are given by

$$RO(K) \xrightarrow{(-)^H} RO(C_2),$$

$$(-)^L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (-)^D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad (-)^R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

In particular, for any of these index two subgroups $H \leq K$, we have $(\rho_K)^H = \rho_{C_2}$.

2.2. Mackey functors. For G-spectra W and X, the collection of abelian groups $[G/H, \wedge W, X]^G$, as H varies, defines a G-Mackey functor. In the case $W = S^V$ for a (virtual) G-representation V, this is the Mackey functor $\pi_V(X)$. We give examples of G-Mackey functors for $G = C_2$ in subsection 3.1 and for $G = C_2 \times C_2$ in section 4.

Notation 2.1. We will typically denote Mackey functor restriction maps by

$$r^G_H: M(G) \rightarrow M(H)$$

and transfers by

$$\tau^G_H: M(H) \rightarrow M(G).$$

Mackey functors are required to satisfy the so-called double coset formula. Since our group $G = C_2 \times C_2$ is abelian, this means that for any two H_1 and H_2 of the nontrivial cyclic subgroups, the restriction maps commute with the transfer maps, in the sense that

$$r^G_{H_1} \circ \tau^G_{H_2} = \tau^G_{H_1} \circ r^H_{H_2}$$

Definition 2.3. Given a surjection $\phi_N : G \rightarrow G/N$ of groups with kernel $N \leq G$, there is a pullback for Mackey functors

$$\phi^*_N : \text{Mack}(G/N) \rightarrow \text{Mack}(G)$$

defined by

$$\phi^*_N(M)(H) = \begin{cases} M(H/N) & N \leq H \\ 0 & N \not\leq H. \end{cases}$$

In the Mackey functor literature, this pullback is known as inflation along the quotient $G \rightarrow G/N$.

Example 2.4. Let

$$M(C_2), \quad M(e)$$

be a C_2-Mackey functor, where we assume trivial Weyl group action for simplicity. Then, under the quotient map $K \rightarrow K/R \cong C_2$, this pulls back to the K-Mackey
functor
\[
\begin{array}{ccc}
 0 & 0 & M(e) \\
\end{array}
\]

0.

Notation 2.5. We will often encounter Mackey functors which are direct sums of inflations along the projections to different subgroups, and it will be convenient to use the notation
\[
\phi^*_{LDR} M := \phi^*_{L} M \oplus \phi^*_{D} M, \quad \phi^*_{LDR} M := \phi^*_{L} M \oplus \phi^*_{D} M \oplus \phi^*_{R} M.
\]

There is a related construction in the world of spectra. Given a surjection \(\phi : G \rightarrow G/N \), there is a geometric pullback functor \(\phi^*_N : \text{Sp}_{G/N} \rightarrow \text{Sp}_G \) ([LMS, Theorem II.9.5], [H, Proposition 4.3]). For our purposes, the important property is its behavior on suspensions of Eilenberg-Mac Lane spectra. This is given by
\[
(2.6) \quad \phi^*_N (S^{V G} \wedge H_{G/N} M) \simeq S^V \wedge H_G \phi^*_N M
\]
for \(V \in \text{RO}(G) \) and \(M \in \text{Mack}(G/N) \) ([H, Proposition 4.2, Corollary 4.6]).

2.3. Relationship between twisted (de)suspensions, transfers, and restrictions. Consider the \(K \)-cofiber sequence
\[
(K/R_+ \wedge X)^K \simeq X^R \xrightarrow{\tau^K} X^K \rightarrow (\Sigma^\alpha X)^K,
\]
where the map \(\tau \) is the transfer. We similarly get that \((\Sigma^{-\alpha} X)^K \) is the fiber of the restriction:
\[
(2.8) \quad (\Sigma^{-\alpha} X)^K \rightarrow X^K \xrightarrow{\tau^K} X^R.
\]

We have similar fiber sequences relating the \(L \) transfer and restriction to (de)suspension by \(\beta \), and the \(D \) transfer and restriction to (de)suspension by \(\gamma \).

2.4. Anderson duality. In this section, \(G \) can be any finite group. By Brown Representability in the category of \(H\mathbb{F}_2 \)-modules, the functor
\[
X \mapsto \text{Hom}_{\mathbb{F}_2}(\pi_*^GX, \mathbb{F}_2)
\]
on the category of \(H\mathbb{F}_2 \)-modules is represented by some \(H\mathbb{F}_2 \)-module, which we write \(E^H_{\mathbb{F}_2} \). As in [GM, Lemma 3.1], plugging in the \(H\mathbb{F}_2 \)-modules \(G/H_+ \wedge H\mathbb{F}_2 \) shows that in fact \(E^H_{\mathbb{F}_2} \simeq H\mathbb{F}_2^* \). The following more general result, whose proof was explained to us by John Greenlees, will be quite useful.

Proposition 2.9. Let \(M \) be an \(\mathbb{F}_2 \)-module. Then
\[
\pi_V(HM^*) \cong (\pi_{-V}HM)^*.
\]
Proof. By Brown Representability in the category of $H\mathbb{F}_2$-modules, the functor
$$\mathcal{F} \mapsto \text{Hom}_{\mathbb{F}_2}^G(\pi_*^G(\mathcal{F} \wedge H\mathbb{F}_2^M), \mathbb{F}_2),$$
onumber
on the category of $H\mathbb{F}_2$-modules is represented by some $H\mathbb{F}_2$-module, which we write \mathbb{F}_2^M. By plugging in $\mathcal{F} = G/H \wedge H\mathbb{F}_2$, we see that $\mathbb{F}_2^M \simeq H\mathbb{F}_2^M$. In other words,
$$[X, H\mathbb{F}_2^M]_{H\mathbb{F}_2} \text{-mod} \Rightarrow \text{Hom}_{\mathbb{F}_2}^G(\pi_*^G(\mathcal{F} \wedge H\mathbb{F}_2^M), \mathbb{F}_2).$$
Plugging in $\mathcal{F} = S^V \wedge H\mathbb{F}_2$ gives the result. \qed

2.5. The slice filtration. We’ve already defined $X \geq n$ for a G-spectrum X and we have a notion of “less than” as well.

Definition 2.10. We say that $X < n$ if
$$[S^k \rho^H + r, X]^H = 0$$
for all $r \geq 0$ and all subgroups $H \leq G$ such that $k|H| \geq n$.

In other words, $X < n$ if and only if the restriction $X \downarrow^G_H$ is less than n for all proper subgroups $H < G$ and
$$[S^k \rho^H + r, X]^G = 0$$
for all $r \geq 0$ and $k \geq \frac{n}{|G|}$. More generally, restriction to subgroups is compatible with the slice dimension, in the following sense.

Proposition 2.11 ([H, Cor. 2.6]). Suppose that $X \in \text{Sp}^G$ satisfies $k \leq X \leq n$ and $H \leq G$. Then $k \leq X \downarrow^G_H \leq n$ as an H-spectrum.

The following characterization of the subcategory $\tau_{\geq n}$ in terms of connectivity of fixed points is useful.

Theorem 2.12 ([HY, Corollary 2.9, Theorem 2.10]). Let $n \geq 0$. Then $X \geq n$ if and only if
$$\pi_k(X^H) = 0 \quad \text{for} \quad k < \frac{n}{|H|}.$$

An immediate corollary is

Corollary 2.13. If $n \geq 0$ and X is n-connective, in the sense that $\pi_k(X^H) = 0$ for all subgroups and all $k < n$, then $X \geq n$.

For a few values of n, the category of n-slices is well-understood.

Proposition 2.14.

1. [HHR, Proposition 4.50] X is a 0-slice if and only if $X \simeq H\mathbb{M}$ for \mathbb{M} an arbitrary Mackey functor.

2. [HHR, Proposition 4.50] X is a 1-slice if and only if $X \simeq \Sigma^1 H\mathbb{M}$ for \mathbb{M} a Mackey functor with injective restrictions.

3. [U, Theorem 6-4] X is a (-1)-slice if and only if $X \simeq \Sigma^{-1} H\mathbb{M}$ for \mathbb{M} a Mackey functor with surjective transfers.

Though these characterizations are not enough to determine all slices in every case as the slice tower does not commute with taking ordinary suspensions, it does commute with suspensions by the regular representation of G.
Proposition 2.15 ([HHR, Corollary 4.25]). For any \(k \in \mathbb{Z} \),
\[P_{k+|G|}^{k+|G|}(\Sigma^p X) \simeq \Sigma^p P_k^p(X). \]

Additionally, we understand the relationship between the slice filtration and taking pullbacks.

Proposition 2.16 ([U, Corollary 4.5]). Let \(N \trianglelefteq G \) be normal of index \(k \) and let \(X \) be a \(G/N \)-spectrum. Then
\[\phi_N^* P_n X \simeq P_{kn}^n(\phi_N^* X). \]

In particular, the pullback of an \(n \)-slice is a \(kn \)-slice.

Proposition 2.17. Let \(d \in \mathbb{Z} \) and let
\[X \xrightarrow{f} Y \rightarrow Z \]
be a fiber sequence of \(G \)-spectra such that \(P_d(Z) \simeq * \simeq P_d^d(\Sigma^{-1} Z) \). Then \(f \) induces an equivalence on \(n \)-slices.

Proof. This follows from [W, Proposition 2.32]. \(\square \)

2.6. Review of Holler-Kriz. In [HK], the authors compute the homotopy of \((\Sigma^V HF_2)^G\) for any elementary abelian group \(G \). Their answer is given as the Poincaré series of the graded \(\mathbb{F}_2 \)-vector space.

Theorem 2.18 ([HK, Section 6]). Let \(\ell, n \geq 0 \) and \(i, j \geq 1 \). The Poincaré series for \(\pi_*(\Sigma^V HF_2)^k \) is
\begin{align*}
(1) & \quad V = 0: \quad 1 \\
(2) & \quad V = n\alpha: \quad 1 + x + \cdots + x^n \\
(3) & \quad V = -ja: \quad x^{-j} + \cdots + x^{-3} + x^{-2} \\
(4) & \quad V = n\alpha + \ell \beta: \quad (1 + \cdots + x^n)(1 + \cdots + x^\ell) \\
(5) & \quad V = n\alpha - j \beta: \quad (1 + \cdots + x^n)(x^{-j} + \cdots + x^{-2}) \\
(6) & \quad V = -ia - j \beta: \quad (x^{-i+1} + \cdots + x^{-2})(x^{-j} + \cdots + x^{-2})
\end{align*}

If either \(i \) or \(j \) is equal to 1, then the above series should be interpreted as zero. The answer is more complicated when all three nontrivial irreducible representations are involved, so we state those cases separately.

Theorem 2.19 ([HK, Section 6]). Let \(\ell, m, n \geq 1 \). The Poincaré series for \(\pi_*(\Sigma^{(\alpha+\beta+\gamma)HF_2})^k \) is
\[(1 + \cdots + x^\ell)(1 + \cdots + x^m) + x(1 + \cdots + x^{\ell+m})(1 + \cdots + x^{n-1}) \]

Expanded out, this polynomial can be described as follows, assuming \(\ell \leq m \leq n \):
The constant coefficient is 1. Then the coefficients increase by 2 until \(x^\ell \). Thereafter, they increase by 1 until \(x^n \). They then stay constant until \(x^n \), and finally decrease (by 1) to 1, which is the coefficient of \(x^{\ell+m+n} \).

Theorem 2.20 ([HK, Section 6]). Let \(\ell, m \geq 1 \). If \(k \geq 2 \), then the Poincaré series for \(\pi_*(\Sigma^{(\alpha+\beta+\gamma)HF_2})^k \) is
\[\left(\frac{1}{x^\ell + \cdots + \frac{1}{x}} \right) (1 + x + \cdots + x^{k-2}) + x^k(1 + \cdots + x^{\ell-k})(1 + \cdots + x^{m-k}) \]
In the case \(k = 1 \), the series is
\[x(1 + \cdots + x^{\ell-1})(1 + \cdots + x^{m-1}). \]
Theorem 2.21 ([HK, Section 6]). Let $j, k, \ell \geq 1$. Then the Poincaré series for $\pi_*((\Sigma j-\alpha-j\beta-k^2 HF_2)^K)$ is

\[
(1) \quad \frac{1}{x^{j+k+\ell}}(1 + \ldots + x^{j-2})(1 + \ldots + x^{k-2}) + \frac{1}{x^{j+\ell+1}}(1 + \ldots + x^{j+\ell})(1 + \ldots + x^{\ell+1})
\]

if $j, k \geq \ell + 1$ or

\[
(2) \quad \frac{1}{x^{j}}(1 + \ldots + x^{j-2})(1 + \ldots + x^{\ell-2}) + \frac{1}{x^{k}}(1 + \ldots + x^{k-2})(1 + \ldots + x^{k-1})
\]

if $\ell \geq k$.

Swapping the role of j and k gives the case $\ell \geq j$ in Theorem 2.21.

Theorem 2.22 ([HK, Section 6]). Let $i, j, k \geq 1$. Then the Poincaré series for $\pi_*((\Sigma -i\alpha-j\beta-k^2 HF_2)^K)$ is

\[
\frac{1}{x^{i+j+k+\ell}} \left[(1 + x + \ldots + x^{j-2})(1 + \ldots + x^{i-2}) + x^{i-1}(1 + \ldots + x^{i-1})(1 + \ldots + x^{j-1}) \right]
\]

Corollary 2.23. Let $k \geq 1$. The Poincaré series for $\pi_*((\Sigma k^2 HF_2)^K)$ is

\[
\frac{1}{x^{3k}} \left[(1 + x + \ldots + x^{2k-2})(1 + \ldots + x^{k-2}) + x^{k-1}(1 + \ldots + x^{k-1}) \right]^2
\]

3. Review of $G = C_2$

A Mackey functor for the group C_2 may be depicted by the Lewis diagram

\[
\begin{array}{c}
\downarrow \\
M(G) \setminus \downarrow \\
\uparrow M(e)
\end{array}
\]

where we have omitted the C_2-action on $M(e)$.

3.1. The main players.

Example 3.1. The constant Mackey functor is $\mathbb{F}_2 = 1 \begin{pmatrix} \mathbb{F}_2 \\ \mathbb{F}_2 \end{pmatrix}$.

Example 3.2. The geometric Mackey functor is $g = \phi_{C_2}^\ast (\mathbb{F}_2) = \begin{pmatrix} \mathbb{F}_2 \\ 0 \end{pmatrix}$. Since $g(e) = 0$, it follows that $(Hg)^e \simeq \ast$. Smashing the cofiber sequence

\[
(C_2)_+ \rightarrow S^0 \rightarrow S^\sigma
\]

with Hg implies that

\[
\Sigma^k Hg \simeq Hg \quad \text{and} \quad \Sigma^{k\sigma} Hg \simeq \Sigma^k Hg.
\]

Thus, using either Proposition 2.16 or Proposition 2.15, it follows that $\Sigma^k Hg$ is a 2k-slice.
Example 3.3. The free Mackey functor is \(f = \begin{pmatrix} 0 \\ F_2 \end{pmatrix} \). This is relevant because

\[
\Sigma^{1-\sigma} H F_2 \simeq H f.
\]

Note that these Mackey functors sit in an exact sequence

\[
f \hookrightarrow F_2 \twoheadrightarrow g.
\]

The resulting cofiber sequence

\[
H f \longrightarrow H F_2 \longrightarrow H g
\]

can be used to compute the homotopy of \(\Sigma^{k \rho} H F_2 \).

Proposition 3.6. For \(k \geq 0 \), the nontrivial homotopy Mackey functors of \(\Sigma^{k \rho} H C_2 F_2 \) are

\[
\pi_i \left(\Sigma^{k \rho} H C_2 F_2 \right) \simeq \begin{cases} F_2^* & i = 2k \\ g^* & i \in [k, 2k-1] \end{cases}
\]

Proof. This follows by induction from repeated use of the cofiber sequence

\[
\Sigma^{(j-1)\rho + 2} H F_2 \simeq \Sigma^{j \rho} H f \longrightarrow \Sigma^{j \rho} H F_2 \longrightarrow \Sigma^{j \rho} H g \simeq \Sigma^{j} H g,
\]

where \(j \geq 1 \).

Example 3.7. The opposite to the constant Mackey functor is \(F_2^* = \begin{pmatrix} 0 \\ F_2 \end{pmatrix} \). We again have a twisting

\[
\Sigma^{1-\sigma} H f \simeq H F_2^*.
\]

We also have the exact sequence of Mackey functors

\[
g \hookrightarrow F_2^* \twoheadrightarrow f.
\]

The resulting cofiber sequence

\[
H g \longrightarrow H F_2^* \longrightarrow H f
\]

can be used to compute the homotopy of \(\Sigma^{-k \rho} H F_2^* \) (which also follows from Proposition 3.6 by Proposition 2.9).

Proposition 3.10. For \(k \geq 0 \), the nontrivial homotopy Mackey functors of \(\Sigma^{-k \rho} H C_2 F_2^* \) are

\[
\pi_i \left(\Sigma^{-k \rho} H C_2 F_2^* \right) \simeq \begin{cases} F_2^* & i = 2k \\ g^* & i \in [k, 2k-1] \end{cases}
\]

Together, Proposition 3.6 and Proposition 3.10 combine to give the RO\((C_2)\)-graded homotopy Mackey functors of \(H F_2 \), which we display in Figure 3.11.
3.2. The slice tower for $\Sigma^n H_{C_2 F_2}$.

Example 3.12. The spectrum H_{F_2} is a 0-slice by Proposition 2.14.

Example 3.13. The spectrum $\Sigma^1 H_{F_2}$ is a 1-slice by Proposition 2.14.

Example 3.14. The spectrum $\Sigma^2 H_{F_2}$ is a 2-slice, since

$$\Sigma^2 H_{F_2} \simeq \Sigma^\rho (\Sigma^{1-\sigma} H_{F_2}) \simeq \Sigma^\rho H_f.$$

Example 3.15. The spectrum $\Sigma^3 H_{F_2}$ is a 3-slice, since

$$\Sigma^3 H_{F_2} \simeq \Sigma^\rho (\Sigma^{2-\sigma} H_{F_2}) \simeq \Sigma^\rho \Sigma^1 H_f.$$

Since $\Sigma^1 H_f$ is a 1-slice, the claim follows.

Example 3.16. The spectrum $\Sigma^4 H_{F_2}$ is a 4-slice, since

$$\Sigma^4 H_{F_2} \simeq \Sigma^\rho (\Sigma^{3-\sigma} H_{F_2}) \simeq \Sigma^\rho \Sigma^2 H_f \simeq \Sigma^{2\rho} \Sigma^{1-\sigma} H_f \simeq \Sigma^{2\rho} H_{F_2^*}.$$

Since $H_{F_2^*}$ is a 0-slice, the claim follows.

Example 3.17. The spectrum $\Sigma^5 H_{F_2}$ has both a 5-slice and a 6-slice, since

$$\Sigma^5 H_{F_2} \simeq \Sigma^\rho (\Sigma^{4-\sigma} H_{F_2}) \simeq \Sigma^{2\rho} \Sigma^3 H_f \simeq \Sigma^{2\rho} \Sigma^{2-\sigma} H_f \simeq \Sigma^{2\rho} \Sigma^1 H_{F_2^*}.$$

Now the slice tower for $\Sigma^1 H_{F_2^*}$ is the suspension of (3.9):

$$\Sigma^1 H_g \longrightarrow \Sigma^1 H_{F_2^*} \longrightarrow \Sigma^1 H_f.$$
The left spectrum is a 2-slice, while the right one is a 1-slice. Thus the slice tower for \(\Sigma^5 H_{F_2} \) is

\[
P_6^5 = \Sigma^3 Hg \to \Sigma^5 H_{F_2} \to \Sigma^{2\rho + 1} H_{F_2} = P_5^5.
\]

More generally, we have

Theorem 3.18. The slice tower of \(\Sigma^n H_{F_2} \), for \(n \geq 4 \), is

\[
\begin{array}{ccc}
P_{2n-4}^n = \Sigma^{n-2} Hg & \to & \Sigma^n H_{F_2} \\
P_{2n-6}^n = \Sigma^{n-3} Hg & \to & \Sigma^{n-1+\rho} H_{F_2} \\
P_n = \Sigma^{(2^n - 2)\rho + 4} H_{F_2} & \to & \Sigma^{(n-1+\rho)\rho + 5} H_{F_2} \\
P_n = \Sigma^{(2^n - 2)\rho + 4} H_{F_2} & \to & \Sigma^{(n-1+\rho)\rho + 5} H_{F_2}
\end{array}
\]

Proof. The 2\(\rho \)-suspension of \(\Sigma Hg \to H_{F_2} \to Hf \) is

\[
\Sigma^2 Hg \to \Sigma^4 H_{F_2} \to \Sigma^{\rho+2} H_{F_2}.
\]

The theorem is obtained by repeated application of suspensions of this cofiber sequence.

Corollary 3.19. The \(C_2 \)-spectrum \(\Sigma^n H_{f} \) is an \(n \)-slice for \(n = 0, 1, 2 \). If \(n \geq 3 \), then \(n \leq \Sigma^n Hf \leq 2n - 2 \) and \(P_{2n-2}^{\rho} (\Sigma^n Hf) \simeq \Sigma^{n-1} Hg \).

Proof. This follows from the fiber sequence

\[
\Sigma^{n-1} Hg \to \Sigma^n Hf \to \Sigma^n H_{F_2}
\]

and **Theorem 3.18.** Indeed, the slice tower is given by augmenting the slice tower for \(\Sigma^n H_{F_2} \) with the above fiber sequence.

4. **Mackey functors for \(\mathcal{K} = C_2 \times C_2 \)**

A Lewis diagram for a Mackey functor over the Klein-four group takes the shape

\[
\begin{array}{ccc}
M(K) & \to & M(D) \\
\downarrow & & \downarrow \\
M(L) & \to & M(R) \\
\downarrow & & \downarrow \\
M(e) & \to & M(e)
\end{array}
\]
We have not drawn in the C_2-actions on the intermediate groups or the \mathcal{K}-action on $M(e)$ (these actions are trivial in all of our examples). In the examples below, we only draw restriction or transfer maps that are nonzero.

Example 4.1. We have the constant Mackey functor

\[
\begin{array}{ccc}
F_2 = F_2 & F_2 & F_2, \\
1 & 1 & 1 \\
F_2 & F_2 & F_2
\end{array}
\]

as well as its dual

\[
\begin{array}{ccc}
F_2^* = F_2 & F_2 & F_2, \\
1 & 1 & 1 \\
F_2 & F_2 & F_2
\end{array}
\]

Proposition 4.2. $\Sigma^{-\rho}HF_2 \simeq \Sigma^{-4}HF_2^*$.

Proof. Restricting to L, say, we have

\[
\iota_1^*(\Sigma^{-\rho}HKF_2) \simeq \Sigma^{-2-2\sigma}HC_2F_2 \simeq \Sigma^{-4}\Sigma^{2-2\sigma}HC_2F_2 \simeq \Sigma^{-4}HC_2F_2^*.
\]

The same argument applies to the restriction to D and R. **Theorem 2.22** gives that $(\Sigma^{-\rho}HF_2)^K \simeq \Sigma^{-4}HF_2$.

The transfer map from R to K fits into a fiber sequence

\[
(\Sigma^{-2\rho}HRF_2)^R \simeq (K/R_+ \land \Sigma^{-\rho}HKF_2)^K \rightarrow (\Sigma^{-\rho}HKF_2)^K \rightarrow (\Sigma^{\sigma-\rho}HKF_2)^K.
\]

By **Theorem 2.18** this becomes a fiber sequence

\[
\Sigma^{-4}HF_2 \rightarrow \Sigma^{-4}HF_2 \rightarrow *,
\]

so that the transfer map is an equivalence. By symmetry, we find that the other transfer maps are equivalences as well.

Similarly, the restriction from K to R fits into a fiber sequence

\[
(\Sigma^{-\rho-\sigma}HKF_2)^K \rightarrow (\Sigma^{-\rho}HKF_2)^K \rightarrow (K/R_+ \land \Sigma^{-\rho}HKF_2)^K \simeq (\Sigma^{-2\rho}HRF_2)^R.
\]

By **Theorem 2.22**, the spectrum $(\Sigma^{-\rho-\sigma}HKF_2)^K$ has $\pi_{-4} \cong F_2 \cong \pi_{-5}$. It follows from the long exact sequence in homotopy that the restriction map must be zero.

\[\square\]
Example 4.3. The geometric Mackey functor is

\[g := \phi^*_K(\mathbb{F}_2) = 0 \quad 0 \quad 0, \]

Example 4.4. The free Mackey functor is

\[f := 0 \quad 0 \quad 0, \quad \mathbb{F}_2 \]

Unlike the case for \(G = C_2 \), the \(K \)-spectrum \(H_Kf \) is not equivalent to \(\Sigma^V H_K\mathbb{F}_2 \) for any \(V \).

Example 4.5.

\[m := \mathbb{F}_2 \quad \mathbb{F}_2 \quad \mathbb{F}_2. \]

and

\[m^* := \mathbb{F}_2 \quad \mathbb{F}_2 \quad \mathbb{F}_2. \]

Example 4.6.

\[w := \mathbb{F}_2 \quad \mathbb{F}_2 \quad \mathbb{F}_2. \]
and

\[w^* := F_2 \]

\[\begin{array}{ccc}
F_2 & \xrightarrow{1} & F_2 \\
\downarrow 1 & & \downarrow 1 \\
F_2 & & \\
\end{array} \]

\[\rightarrow F_2. \]

Example 4.7.

\[mg := F_2 \]

\[\begin{array}{ccc}
F_2 \oplus F_2 & \xrightarrow{\nabla} & F_2 \\
\downarrow p_1 & & \downarrow p_2 \\
F_2 & & F_2 \\
\end{array} \]

\[\rightarrow F_2. \]

Proposition 4.8. There are equivalences

1. \(\Sigma^{-\rho}Hm \simeq \Sigma^{-2}Hmg^* \)
2. \(\Sigma^\rho Hm^* \simeq \Sigma^2 Hmg \)

Proof. We prove the second statement. The first follows in a similar way, or by citing Proposition 2.9. Consider the (nonsplit) short exact sequence

\[\phi_1^* F_2 \xrightarrow{m^*} \phi_{DR}^* F_2. \]

This gives a nonsplit cofiber sequence

\[\Sigma^2 H\phi_1^* F_2 \xrightarrow{\Sigma^\rho Hm^*} \Sigma^\rho Hm^* \xrightarrow{\Sigma^\rho H\phi_{DR}^* F_2} \Sigma^2 H\phi_{DR}^* F_2. \]

It follows that \(\Sigma^\rho Hm^* \simeq \Sigma^2 HE \), for some nonsplit extension \(E \) of \(\phi_{DR}^* F_2 \) by \(\phi_1^* F_2 \). But we can similarly express \(E \) as an extension of \(\phi_{LR}^* F_2 \) by \(\phi_1^* F_2 \). The only possibility is \(E \simeq mg \).

Example 4.9.

\[W := F_2 \]

\[\begin{array}{ccc}
F_2 \oplus F_2 \oplus F_2 & \xrightarrow{i_1} & F_2 \\
\downarrow i_2 & & \downarrow i_3 \\
F_2 & & F_2 \\
\downarrow 1 & & \downarrow 1 \\
F_2 & & \\
\end{array} \]

\[\rightarrow F_2. \]
and

\[W^* := F_2 \]

5. The slices of \(\Sigma^n H F_2 \)

Proposition 5.1. For \(n \geq 0 \) and \(K = C_2 \times C_2 \), the \(K \)-spectrum \(\Sigma^n H F_2 \) satisfies

\[n \leq \Sigma^n H F_2 \leq 4(n - 3). \]

Proof. The lower bound follows by Corollary 2.13. For the upper bound, note that after restricting to the trivial subgroup, the spectrum is an \(n \)-slice. By Theorem 3.18, the restriction to a cyclic subgroup is bounded above by \(2n - 4 \) if \(n \geq 4 \) (it is an \(n \)-slice if \(n = 0, \ldots, 3 \)). It therefore remains to check that

\[\pi_{k+r}(\Sigma^n H F_2) = [S^{k+r}, \Sigma^n H F_2]^K = 0 \]

for \(r \geq 0 \) and \(4k > 4(n - 3) \). In other words, the homotopy groups \(\pi^K(\Sigma^{n-k+r} H F_2) \) must vanish if \(r \geq 0 \) and \(k > n - 3 \). This follows from Corollary 2.23. \(\square \)

Moreover, we know a priori in which dimensions the slices appear.

Proposition 5.2. For \(n \geq 0 \) and \(K = C_2 \times C_2 \), all slices of the \(K \)-spectrum \(\Sigma^n H F_2 \) above level \(n \) are even slices. Furthermore, if \(n \geq 4 \), then all slices above level \(2n - 4 \) occur only in dimensions that are multiples of 4.

Proof. Since the restriction to any cyclic subgroup is bounded above by \(2n - 4 \) by Theorem 3.18, it follows that all slices of \(\Sigma^n H F_2 \) above dimension \(2n - 4 \) must be geometric. Thus, we know further that the only nontrivial slices of \(\Sigma^n H F_2 \) above dimension \(2n - 4 \) are \(4k \)-slices.

Similarly, by Theorem 3.18, the restriction of \(\Sigma^n H F_2 \) to any cyclic subgroup has only even slices, except for possibly the \(n \)-slice. Thus any odd slices above level \(n \) must be geometric. But geometric \(K \)-spectra only have slices in dimension a multiple of \(|K| = 4 \). It follow that all odd slices above level \(n \) must be trivial. \(\square \)

5.1. The \(n \)-slice. We will use the following recursion to establish the bottom slices of \(\Sigma^n H F_2 \).

Proposition 5.3. Let \(n \geq 7 \). Then

\[P_k^r(\Sigma^n H F_2) \simeq \Sigma^r P_{k-4}^{k-4}(\Sigma^{n-4} H F_2) \]

for \(k \in [n, 2n - 7] \).

Proof. By Proposition 2.15, we have

\[P_k^r(\Sigma^n H F_2) \simeq \Sigma^r P_{k-4}^{k-4}(\Sigma^{n-r} H F_2) \simeq \Sigma^r P_{k-4}^{k-4}(\Sigma^{n-4} H F_2^r). \]

Thus it suffices to compare the \((k - 4)\)-slices of \(\Sigma^{n-4} H F_2^r \) and \(\Sigma^{n-4} H F_2 \).

The short exact sequences of Mackey functors

\[0 \rightarrow m^* \rightarrow F_2^* \rightarrow f \rightarrow 0 \]
and
\[0 \to f \to \mathbb{F}_2 \to m \to 0 \]
give the following diagram of fiber sequences
\[
\begin{array}{cccc}
\Sigma^j Hm^* & \to & \Sigma^j \mathbb{F}_2^* & \to \Sigma^j Hf \\
\downarrow & & \downarrow & \\
\text{fib}(\lambda) & \to & \Sigma^j \mathbb{F}_2^* & \to \Sigma^j Hf \\
\downarrow & & \downarrow & \\
\Sigma^{j-1} Hm & \to & \ast & \to \Sigma^j Hm
\end{array}
\]

Then fib(\lambda) is \(j−1\)-connective, and the underlying spectrum of fib(\lambda) is contractible. By Theorem 2.12, it follows that fib(\lambda) \(\geq 2j−2\) as long as \(j \geq 1\). Similarly, \(\Sigma \text{fib}(\lambda) \geq 2j\). By [HHR2, Corollary 4.17], if tollows that \(\lambda\) induces an equivalences of slices below \(2j−2\). Taking \(j = n−4\) gives the result. □

Note that the above argument, using only the fiber sequence \(\Sigma^j Hm^* \to \Sigma^j \mathbb{F}_2^* \to \Sigma^j Hf\), gives the following result that will be employed below.

Proposition 5.4. Let \(n \geq 7\). Then
\[P_k^n(\Sigma^n \mathbb{F}_2) \simeq \Sigma^n P^{k-4}_k(\Sigma^n Hf) \]
for \(k \in [n, 2n−5]\).

Proposition 5.5. For \(n \geq 0\) and \(K = C_2 \times C_2\), the bottom slice of \(\Sigma^n \mathbb{F}_2\) is
\[
P^n_n(\Sigma^n \mathbb{F}_2) \simeq \begin{cases}
\Sigma^n \mathbb{F}_2 & n \in [0, 4] \\
\Sigma^n \mathbb{F}_2^* & n \equiv 0 \pmod{4}, n \geq 4 \\
\Sigma^{n-2} Hm & n \equiv 1 \pmod{4}, n \geq 4 \\
\Sigma^{n-2} Hf & n \equiv 2 \pmod{4}, n \geq 4 \\
\Sigma^{n-2} \mathbb{F}_2 & n \equiv 3 \pmod{4}, n \geq 4
\end{cases}
\]

Proof. By Proposition 5.3, it suffices to establish the base cases, in which \(n \leq 7\). These are given in section 6 below. □

5.2. The 4k-slices.

Theorem 5.6. For all \(n > 4\),
\[P_{4k}^n(\Sigma^n \mathbb{F}_2) = \begin{cases}
\Sigma^k Hg & 4k \in [2n−3, 4n−12] \\
\Sigma^{k+1} H \left(\phi_{LDR}^* (\mathbb{F}_2^*) \oplus g^{4k−n−2} \right) & 4k \in [n+2, 2n−4] \\
\Sigma^{k+1} Hg \mathbb{F}_2^* & 4k = n+1 \\
\Sigma^{k+1} \mathbb{F}_2^* & 4k = n \\
\ast & \text{otherwise}
\end{cases} \]

Proof. The above formula agrees with Theorem 3.18 upon restriction to the cyclic subgroups. To determine the \(K\)-fixed points, we use that
\[P_{4k}^n(\Sigma^n \mathbb{F}_2) \simeq \Sigma^{k} H \mathbb{F}_2 \sigma_0^{n−k} \mathbb{F}_2 \]
by repeated application of Proposition 2.15. The fixed points are then given by Lemma 5.7.
It remains to consider the restriction and transfer maps if $4k \in [n, 2n - 4]$. The restriction maps to the subgroup R, for instance, fit into fiber sequences

$$(\Sigma^{n-kp-\alpha} H^k F_2)^{K} \rightarrow (\Sigma^{n-kp} H^k F_2)^{K} \rightarrow (\Sigma^{n-kp} H^k F_2)^{R}.$$

Fixing $k > 1$, we argue by induction on n that Lemma 5.8 implies that the long exact sequence in homotopy splits into a series of short exact sequences of F_2-vector spaces

$$0 \rightarrow \pi_{k \rho - n + 1}^{K} H^k F_2 \rightarrow \pi_{k \rho - n + 1}^{K} F_{k \rho - n} H^k F_2 \rightarrow 0,$$

linked together by the null restriction map. Since $4k \in [n, 2n - 4]$, it follows that $2k + 2 \leq n \leq 4k$.

The base case for our induction argument is the case $n = 2k + 2$, so that $4k$ is $2n - 4$. In this case, the long exact sequence in homotopy for the fiber sequence

$$(\Sigma^{n-kp} H^k F_2)^{R} \rightarrow (\Sigma^{n-kp} H^k F_2)^{K} \rightarrow (\Sigma^{n-kp} H^k F_2)^{R},$$

splits into a series of short exact sequences

$$0 \rightarrow \pi_{k \rho - n}^{K} H^k F_2 \rightarrow \pi_{k \rho - n}^{K} H^k F_2 \rightarrow 0.$$

The base case is $n = 2k + 1$, so that $4k = 2n - 2$. In this case, $\pi_{k \rho - 2k - 1}^{R} H^k F_2 = 0$, and the other two terms are both of the same dimension (using Lemma 5.9).

For the induction step, we suppose that $\pi_{k \rho - n + 1}^{K} H^k F_2 \rightarrow \pi_{k \rho - n}^{K} H^k F_2$ is injective. It follows that we have an exact sequence

$$0 \rightarrow \pi_{k \rho - n + 1}^{K} H^k F_2 \rightarrow \pi_{k \rho - n}^{K} H^k F_2 \rightarrow \pi_{k \rho - n}^{K} H^k F_2$$

which shows that the map on the right must be surjective.

A similar argument shows that the transfer map from the subgroup R, say, up to K is injective. We argue by (downward) induction on n that Lemma 5.9 implies that the long exact sequence in homotopy for the fiber sequence

$$(\Sigma^{n-kp} H^k F_2)^{R} \rightarrow (\Sigma^{n-kp} H^k F_2)^{K} \rightarrow (\Sigma^{n-kp} H^k F_2)^{K},$$

splits into a series of short exact sequences

$$0 \rightarrow \pi_{k \rho - n}^{K} H^k F_2 \rightarrow \pi_{k \rho - n}^{K} H^k F_2 \rightarrow 0.$$

It remains to show that the transfer maps are linearly independent if $4k \geq n + 2$ and have distinct images if $4k = n + 1$. In the case $4k = n + 1$, consider the exact sequence of Mackey functors

$$\pi_0(\mathcal{K}/R + \Sigma^{4k-1-kp} H^k F_2) \rightarrow \pi_0(\Sigma^{4k-1-kp} H^k F_2) \rightarrow \pi_0(\Sigma^{4k-1-kp+\alpha} H^k F_2).$$

The left Mackey functor vanishes at L and D, and the R-transfer map in the middle Mackey functor is in the image of the left Mackey functor. Thus to see that the L or D transfers in the middle Mackey functor have image distinct from that of the R transfer, it suffices to show that the L or D transfer in the right Mackey functor is nontrivial. But a similar argument to that for the transfer maps above shows that the Mackey functor on the right is F_2^\ast, so we are done. By symmetry, we similarly conclude that the images of the L and D transfers are distinct.

Finally, if $4k \geq n + 2$, to show additionally that the three transfers are linearly independent, we consider the exact sequence

$$\pi_0(\mathcal{K}/D + \Sigma^{n-kp+\alpha+\beta} H^k F_2) \rightarrow \pi_0(\Sigma^{n-kp+\alpha+\beta} H^k F_2) \rightarrow \pi_0(\Sigma^{n-kp+\alpha+\beta+\gamma} H^k F_2).$$
This is an exact sequence of the form
\[\mathbb{F}_2 \rightarrow \mathbb{F}_2^{4k-n-1} \rightarrow \mathbb{F}_2^{4k-n-2}, \]
so that the first map cannot be zero. We conclude that the D transfer map is nonzero after factoring out the L and R transfers, so that the three transfer maps are independent if \(4k \geq n + 2 \).

The following lemmas are direct consequences of Theorem 2.22.

Lemma 5.7. For \(n \geq 4 \), we have
\[\pi_0(\Sigma^{n-kr}\mathbb{F}_2^{4k-n}) \cong \begin{cases} \mathbb{F}_2^{2(n-k)-5} & 4k \in [2n-3,4n-12] \\ \mathbb{F}_2^{4k-n+1} & 4k \in [n,n-2n-4] \\ 0 & \text{else} \end{cases} \]

Proof. The dimension of the fixed points is given by the coefficient of \(x^{k-n} \) in the Poincaré series of Corollary 2.23. Equivalently, the dimension is given by the coefficient of \(x^{4k-n} \) in the polynomial
\[p(x) = (1 + x + \cdots + x^{2k-2})(1 + \cdots + x^{k-2}) + x^{k-1}(1 + \cdots + x^{k-1})^2 \]
This polynomial can be described as follows: The constant coefficient is 1. Then the coefficients increase by 1 until \((2k-1)x^{2k-2} \), remain constant for the term \((2k-1)x^{2k-2} \), and then decrease by 2 until \(1 \cdot x^{3k-3} \). In other words, the coefficient of \(x^i \) is
\[\begin{cases} i + 1 & 0 \leq i \leq 2k - 2 \\ 6k - 2i - 5 & 2k - 1 \leq i \leq 3k - 3 \\ 0 & \text{else} \end{cases} \]
Plugging in \(i = 4k - n \) gives the result. \(\square \)

Lemma 5.8. For \(n \geq 4 \), we have
\[\pi_0(\Sigma^{n-kr}\mathbb{F}_2^{4k-n+1}) \cong \begin{cases} \mathbb{F}_2^{2(n-k)-5} & 4k \in [2n-4,4n-12] \\ \mathbb{F}_2^{4k-n+2} & 4k \in [n-1,n-2n-6] \\ 0 & \text{else} \end{cases} \]

Proof. The dimension of the fixed points here is given by the coefficient of \(x^{k-n} \) in the Poincaré series of Theorem 2.22. Equivalently, the dimension is given by the coefficient of \(x^{4k-n+1} \) in the polynomial
\[p(x) = (1 + x + \cdots + x^{2k-2})(1 + \cdots + x^{k-2}) + x^{k-1}(1 + \cdots + x^{k-1})^2 \]
The polynomial is nearly the same as that from Lemma 5.7 and can be described as follows: The constant coefficient is 1. Then the coefficients increase by 1 until \((2k-1)x^{2k-2} \), remain constant for the term \((2k-1)x^{2k-2} \), and then decrease by 2 until \(1 \cdot x^{3k-2} \). In other words, the coefficient of \(x^i \) is
\[\begin{cases} i + 1 & 0 \leq i \leq 2k - 2 \\ 6k - 2i - 3 & 2k - 1 \leq i \leq 3k - 2 \\ 0 & \text{else} \end{cases} \]
Plugging in \(i = 4k - n + 1 \) gives the result. \(\square \)
Lemma 5.9. For \(n > 4 \), we have
\[
\pi_0(\Sigma^{n-kp+\alpha} H F_2)_K \cong \begin{cases}
F_2^{2(n-k)-5} & 4k \in [2n-2, 4n-12] \\
F_2^{k-n} & 4k \in [n+1, 2n-4] \\
0 & \text{else}
\end{cases}
\]

Proof. Since \(n > 4 \), \(k > 1 \) so the dimension of the fixed points in this case is still given by the coefficient of \(x^{k-n} \) in the Poincaré series of Theorem 2.22. Equivalently, the dimension is given by the coefficient of \(x^{4k-n-1} \) in the polynomial
\[
p(x) = (1 + x + \cdots + x^{2k-2})(1 + \cdots + x^{k-3}) + x^{k-2}(1 + \cdots + x^{k-1})^2
\]
The polynomial is similar to those in Lemma 5.7 and Lemma 5.8 and can be described as follows: The constant coefficient is 1. Then the coefficients increase by 1 until \((2k-2)x^{2k-3} \), decrease by 1 for the single term \((2k-3)x^{2k-2} \), and then decrease by 2 until \(1 \cdot x^{3k-4} \). In other words, the coefficient of \(x^i \) is
\[
\begin{cases}
i + 1 & 0 \leq i \leq 2k-3 \\
6k - 2i - 7 & 2k - 2 \leq i \leq 3k - 4 \\
0 & \text{else}
\end{cases}
\]
Plugging in \(i = 4k - n - 1 \) gives the result. \(\square \)

5.3. The \((4k+2)\)-slices. In this section, we obtain the \((4k+2)\)-slices. We begin with the top such slices.

Proposition 5.10. Let \(n \geq 8 \) be even. Then
\[
P_{2n-6}^{2n} (\Sigma^{n} H F_2) \simeq \Sigma^{(n-2)p+1} H \phi_L^{*} F_2.
\]

Proof. By Proposition 5.4, we have
\[
P_{2n-6}^{2n} (\Sigma^{n} H F_2) \simeq \Sigma^{p} P_{2n-10}^{2n-6} (\Sigma^{n-4} H F).
\]
The short exact sequence
\[
0 \to \bar{f} \to F_2 \to \bar{m} \to 0
\]
gives rise to the fiber sequence
\[
\Sigma^{n-5} H \bar{m} \to \Sigma^{n-4} H \bar{f} \to \Sigma^{n-4} H F_2.
\]
By Proposition 5.2, we have
\[
P_{2n-10}^{2n} (\Sigma^{n-5} H F_2) \simeq \ast \simeq P_{2n-10}^{2n-10} (\Sigma^{n-4} H F_2).
\]
It then follows from Proposition 2.17 that \(\Sigma^{n-5} H \bar{m} \to \Sigma^{n-4} H \bar{f} \) induces an isomorphism on \((2n-10)\)-slices.
The short exact sequence
\[
0 \to \bar{m} \to \phi_L^{*} F_2 \to \bar{g} \to 0
\]
gives a fiber sequence
\[
\Sigma^{n-6} H \bar{g} \to \Sigma^{n-5} H \bar{m} \to \Sigma^{n-5} H \phi_L^{*} F_2.
\]
If \(n \geq 8 \) is even, then by Theorem 3.18, we get that
\[
P_{2n-10}^{2n} (\Sigma^{n-5} H \bar{m}) \simeq \Sigma^{(n-3)p+1} H \phi_L^{*} F_2.
\]
\(\square \)
Proposition 5.11. Let $n \geq 5$ be odd. Then

$$P_{2n-4}^{2n-4}(\Sigma^n H F_2) \simeq \Sigma^{(n+1)/2} H \phi^*_{LDR f_1}.$$

Proof. For $n = 5$, this is given in Example 6.6 below. We have

$$P_{2n-4}^{2n-4}(\Sigma^n H F_2) \simeq P_{2n-4}^{2n-4}(\Sigma^{p+1} H F_2^*) \simeq \Sigma^{p} P_{2n-8}^{2n-8}(\Sigma^{n-1} H F_2^*).$$

The short exact sequence

$$0 \rightarrow g \rightarrow F_2^* \rightarrow w^* \rightarrow 0$$

gives a fiber sequence

$$\Sigma^{n-4} H g \rightarrow \Sigma^{n-4} H \phi_{LDR}^* F_2 \rightarrow \Sigma^{n-4} H w^*.$$

It follows that, if $n \geq 5$, then $\Sigma^{n-4} H \phi_{LDR}^* F_2 \rightarrow \Sigma^{n-4} H w^*$ induces an equivalence on $(2n-8)$-slices.

Next, the short exact sequence

$$0 \rightarrow w^* \rightarrow W^* \rightarrow g^3 \rightarrow 0$$

yields a fiber sequence

$$\Sigma^{n-5} H g^3 \rightarrow \Sigma^{n-4} H w^* \rightarrow \Sigma^{n-4} H W^*.$$

It follows that, if $n \geq 7$, then $\Sigma^{n-4} H w^* \rightarrow \Sigma^{n-4} H W^*$ induces an equivalence on $(2n-8)$-slices.

Finally, consider the short exact sequence

$$0 \rightarrow \phi_{LDR}^* F_2 \rightarrow W^* \rightarrow f \rightarrow 0.$$

This gives a fiber sequence

$$\Sigma^{n-4} H \phi_{LDR}^* F_2 \rightarrow \Sigma^{n-4} H W^* \rightarrow \Sigma^{n-4} H f.$$

The restriction of $\Sigma^{n-4} H f$ to either L, D, or R has no slices above level $2n-12$, and similarly for $\Sigma^{n-5} H f$. Thus the $(2n-8)$-slice of $\Sigma^{n-4} H f$ (and $\Sigma^{n-5} H f$) must be geometric. Since $2n-8$ is not a multiple of 4, we conclude that the $(2n-8)$-slices are trivial. By Proposition 2.17, we conclude that $\Sigma^{n-4} H \phi_{LDR}^* F_2 \rightarrow \Sigma^{n-4} H W^*$ induces an equivalence on $(2n-8)$-slices. We are now done by Theorem 3.18. □

Proposition 5.12. Let $4k+2 \in (n, 2n-4]$. Then

$$P_{4k+2}^{2n-4}(\Sigma^n H F_2) \simeq \Sigma^{k+1} H \phi^*_{LDR f_1}.$$

Proof. If $4k+2 \leq 2n-7$, this follows from Proposition 5.3 and the base cases discussed in section 6. This leaves only the cases of $4k+2 = 2n-6$ if n is even, or $4k+2 = 2n-4$ if n is odd. These cases are handled in the two preceding propositions. □

6. The slice towers of $\Sigma^n H F_2$

We determine the slice towers of $\Sigma^n H F_2$ for $0 \leq n \leq 8$.

Example 6.1. $H F_2$ is a zero-slice.

Example 6.2. $\Sigma^1 H F_2$ is a 1-slice since the restriction maps are injective.
Example 6.3. Σ^2HF_2 is a 2-slice. Since this is true upon restriction to each of the proper subgroups, it suffices to show that

$$[S^{n\rho+r}, \Sigma^2HF_2] = 0$$

for $n > 0$ and $r \geq 0$. This follows from Theorem 2.22.

Example 6.4. Σ^3HF_2 is a 3-slice. Since this is true upon restriction to each of the proper subgroups, it suffices to show that

$$[S^{n\rho+r}, \Sigma^3HF_2] = 0$$

for $n, r > 0$. This follows from Theorem 2.22. Alternatively, $\Sigma^{-\rho}\Sigma^3HF_2 \simeq \Sigma^{-1}HF_2^*$ is a (-1)-slice according to Proposition 2.14 since the transfer maps are surjective. It follows that Σ^3HF_2 is a 3-slice.

Example 6.5. By Proposition 4.2, $\Sigma^4HF_2 \simeq \Sigma^\rho\Sigma^1HF_2^*$. It follows that Σ^4HF_2 is a 4-slice.

Example 6.6. Consider the short exact sequences of Mackey functors

$$0 \rightarrow g \rightarrow F_2^* \rightarrow w^* \rightarrow 0$$

and

$$0 \rightarrow \phi_{LDR}^* \rightarrow w^* \rightarrow f \rightarrow 0,$

where w^* is defined in Example 4.6. The resulting cofiber sequences produce the slice tower for $\Sigma^5HF_2 \simeq \Sigma^\rho\Sigma^1HF_2^*$:

$$P_8^5 = \Sigma^2Hg \rightarrow \Sigma^{\rho+1}HF_2^* \simeq \Sigma^5HF_2$$

$$P_6^5 = \Sigma^{\rho+1}H\phi_{LDR}^* \rightarrow \Sigma^{\rho+1}Hw^*$$

$$P_5^5 = \Sigma^{\rho+1}Hf,$$

Example 6.7. Suspending the slice tower for Σ^5HF_2 gives the tower for Σ^6HF_2:

$$P_{12}^{12} = \Sigma^3Hg \rightarrow \Sigma^{\rho+2}HF_2^* \simeq \Sigma^6HF_2$$

$$P_8^6 = \Sigma^{\rho+2}H\phi_{LDR}^* \rightarrow \Sigma^{\rho+2}Hw^*$$

$$P_6^6 = \Sigma^{\rho+2}Hf.$$

Lemma 6.8. Σ^2HF_2 is a 2-slice.

Proof. The short exact sequence of Mackey functors

$$0 \rightarrow f \rightarrow F_2 \rightarrow m \rightarrow 0,$$

where m is defined in Example 4.5, gives a cofiber sequence

$$\Sigma^1Hm \rightarrow \Sigma^2HF_2 \rightarrow \Sigma^2HF_2.$$

The spectrum $\Sigma^2 H\mathbb{F}_2$ is a 2-slice, and the cofiber sequence
$$\Sigma^1 H\phi^*_L D \mathbb{F}_2 \rightarrow \Sigma^1 H m \rightarrow \Sigma^1 H\phi^*_R \mathbb{F}_2$$
shows that $\Sigma^1 H m$ is also a 2-slice. □

Example 6.9. For $\Sigma^7 H\mathbb{F}_2 \simeq \Sigma^p \Sigma^3 H\mathbb{F}_2^*$, we have fiber sequences as in
$$P^1_{16} = \Sigma^4 H g \rightarrow \Sigma^{p+3} H\mathbb{F}_2^* \simeq \Sigma^7 H\mathbb{F}_2$$
$$P^8 = \Sigma^{p+2} H m \rightarrow P^7 = \Sigma^{p+3} H f$$
where W^* is defined in Example 4.9. Note that $\Sigma^2 H m$ is a 4-slice, as $\Sigma^2 H m \simeq \Sigma^p H m g^*$ according to Proposition 4.8.

Example 6.10. For $\Sigma^8 H\mathbb{F}_2 \simeq \Sigma^p \Sigma^4 H\mathbb{F}_2^*$, we have fiber sequences as in
$$P^2_{20} = \Sigma^5 H g \rightarrow \Sigma^{p+4} H\mathbb{F}_2^* \simeq \Sigma^8 H\mathbb{F}_2$$
$$P^{12} = \Sigma^{3p} H (\phi^*_L D R \mathbb{F}_2^* \oplus g^2) \rightarrow \Sigma^{p+4} H W^*$$
$$P^{10} \Sigma^8 H\mathbb{F}_2$$
The twelve slice is given by Theorem 5.6.

Proposition 6.11. The slice section $P^{10} \Sigma^8 H\mathbb{F}_2$ is equivalent to $\Sigma^{p+3} C$, where C is the cofiber of $H\mathbb{F}_2 \rightarrow H\phi^*_L D R \mathbb{F}_2$.

Proof. The cofiber C has homotopy Mackey functors $\bar{\pi}_1(C) \cong f$ and $\bar{\pi}_0(C) \cong g^2$. Thus the p-suspension of the Postnikov sequence is a fiber sequence
$$\Sigma^{p+2} H g^2 \rightarrow \Sigma^{p+4} H f \rightarrow \Sigma^{p+3} C.$$ On the other hand, the short exact sequence $\phi^*_L D R \mathbb{F}_2^* \rightarrow W^* \rightarrow f$ gives a fiber sequence
$$\Sigma^{3p} H \phi^*_L D R \mathbb{F}_2^* \simeq \Sigma^{p+4} H \phi^*_L D R \mathbb{F}_2 \rightarrow \Sigma^{p+4} H W^* \rightarrow \Sigma^{p+4} H f.$$
Since the 12-slice is the sum of the left terms in these two sequences and $\Sigma^{\rho+4}HW^*$ is $P^{12}\Sigma^8HF_2$, the octahedral axiom gives a cofiber sequence

$$P^{12}_{12}(\Sigma^8HF_2) \longrightarrow P^{12}\Sigma^8HF_2 \longrightarrow \Sigma^{\rho+3}C.$$

But $8 \leq \Sigma^{\rho+3}C \leq 10$, so we are done. \hfill \Box

Remark 6.12. The K-spectrum $\Sigma^{\rho+3}C$ is the first example of a K-spectrum that is not an $RO(K)$-graded suspension of an Eilenberg-Mac Lane spectrum and yet which occurs as a slice or slice section in the tower for Σ^nHF_2. Indeed, the restriction of C to each cyclic subgroup is Σ^1HF. But if Σ^VHM restricts to Σ^1HM for each cyclic subgroup, it must be that $V = 1$. As C has a nontrivial π_0, it cannot be of the form Σ^VHM.

Thus the slice tower is given by

$$
\begin{align*}
P^{20}_{20} &= \Sigma^5Hg \longrightarrow \Sigma^{\rho+4}HF_2^* \simeq \Sigma^8HF_2 \\
P^{16}_{16} &= \Sigma^4Hg^3 \longrightarrow \Sigma^{\rho+4}HW^* \\
P^{12}_{12} &= \Sigma^{3\rho}H(\phi_{LDR}^*F_2^* \oplus g^2) \longrightarrow \Sigma^{\rho+4}HW^* \\
P^{10}_{10} &= \Sigma^{\rho+3}H\phi_{LDR}^*F_2 \longrightarrow \Sigma^{\rho+3}C \\
P^{8} &= \Sigma^{\rho+4}HF_2.
\end{align*}
$$

For the higher suspensions, we do not know the slice tower explicitly. We give a diagram of fibrations which is close to the slice tower in the next two examples.
Example 6.13. For $\Sigma^9 HF_2 \simeq \Sigma^5 HF_2^*$, we have fiber sequences as in

\[
\begin{align*}
P_{24}^{24} = \Sigma^6 Hg & \to \Sigma^{p+5} HF_2^* \simeq \Sigma^9 HF_2 \\
P_{20}^{20} = \Sigma^5 Hg^3 & \to \Sigma^{p+5} Hw^* \\
\Sigma^4 Hg^3 & \to \Sigma^{p+5} H\phi_{LDR} F_2 \to \Sigma^{p+5} HW^* \\
P_{14}^{14} = \Sigma^3 \phi^{p+1} H\phi_{LDR} f & \\
\Sigma^{p+3} Hg^2 & \to \Sigma^{p+5} Hf \\
\Sigma^{p+4} H\phi_{LDR} F_2 & \to \Sigma^{p+4} C \\
\Sigma^{p+2} g & \to \Sigma^{p+5} HF_2 \\
P_{10}^{10} = \Sigma^2 \phi^{p+1} H\phi_{LDR} f & \to \Sigma^{2p+1} Hw^* \\
P_{9}^{9} = \Sigma^{2p+1} Hf.
\end{align*}
\]

This is not quite the slice tower. According to Theorem 5.6, the 16-slice is the sum $A \vee B$. Similarly, the 12-slice is the sum $C \vee D$.
Example 6.14. For $\Sigma^{10}H\mathbb{F}_2 \simeq \Sigma^p \Sigma^6 H\mathbb{F}_2^*$, we have fiber sequences as in

\[
P^2_{28} = \Sigma^7 Hg \to \Sigma^{p+6} H\mathbb{F}_2^* \simeq \Sigma^{10} H\mathbb{F}_2
\]

\[
P^2_{24} = \Sigma^6 Hg^3 \to \Sigma^{p+6} Hw^*
\]

\[
A \quad \Sigma^5 Hg^3 \to \Sigma^{p+6} \phi^*_L \mathcal{D} \mathcal{R} \mathcal{F}_2 \to \Sigma^{p+6} HW^*
\]

\[
B \quad \Sigma^{p+4} Hg^2 \to \Sigma^{p+6} Hf
\]

\[
D \quad \Sigma^{3p+1} Hg^3 \to \Sigma^{p+5} \phi^*_L \mathcal{D} \mathcal{R} \mathcal{F}_2 \to \Sigma^{p+5} C
\]

\[
P^1_{14} = \Sigma^{3p+1} H\phi^*_L \mathcal{D} \mathcal{R} \mathcal{F}_2
\]

\[
E \quad \Sigma^{p+3} g \to \Sigma^{p+6} H\mathbb{F}_2
\]

\[
P^1_{12} = \Sigma^{2p+2} \phi^*_L \mathcal{D} \mathcal{R} \mathcal{F}_2 \to \Sigma^{2p+2} Hw^*
\]

\[
P^1_{10} = \Sigma^{2p+2} Hf,
\]

According to Theorem 5.6, the 20-slice is the sum $A \lor B$ and the 16-slice is the sum $C \lor D \lor E$.

7. Homotopy Mackey functor computations

Here we collect some computations of homotopy Mackey functors of various twisted Eilenberg-Mac Lane spectra.

Theorem 7.1. For all $k \geq 1$, the nontrivial homotopy Mackey functors of $\Sigma^{-kp} H\mathbb{F}_2^*$ are

\[
\pi_i(\Sigma^{-kp} H\mathbb{F}_2^*) = \begin{cases}
\mathbb{F}_2^* & i = 4k \\
mg^* & i = 4k - 1 \\
\phi^*_L \mathcal{D} \mathcal{R} \mathcal{F}_2^* \oplus g^{4k-2-i} & i \in [2k, 4k-2] \\
g^{2(1-k)^2+1} & i \in [k, 2k-1].
\end{cases}
\]
Proof. In the proof of Theorem 5.6, we computed the following homotopy group Mackey functors:

\[
\pi_{-n}(\Sigma^{-k^p}H \overline{F}_2) = \begin{cases}
\mathbb{F}_2^\ast & n = 4k \\
mg^\ast & n = 4k - 1 \\
\phi^{4k-2-n}_{LDR} \mathbb{F}_2 \oplus g^{4k-2-n} & 4k \in [n + 2, 2n - 4] \\
g^{n-k+1} & 4k \in [2n - 3, 4n - 12].
\end{cases}
\]

We know that

\[
\pi_{-i}(\Sigma^{-k^p}H \overline{F}_2^\ast) = \pi_{-(i+4)}(\Sigma^{-(k+1)^p}H \overline{F}_2).
\]

The result follows by setting \(n = i + 4\) and replacing \(k\) by \(k + 1\). \(\square\)

Proposition 2.9 then gives the following result, which gives the homotopy Mackey functors of the bottom slice in the case \(n \equiv 0, 3 \pmod{4}\).

Corollary 7.2. For all \(k \geq 1\), the nontrivial homotopy Mackey functors of \(\Sigma^{k^p}H \overline{F}_2\) are

\[
\pi_{i}(\Sigma^{k^p}H \overline{F}_2) = \begin{cases}
\mathbb{F}_2 & i = 4k \\
mg & i = 4k - 1 \\
\phi^{4k-2-i}_{LDR} \mathbb{F}_2 \oplus g^{4k-2-i} & i \in [k, 2k - 1] \\
g^{2i-1} & i \in [2k, 4k - 2].
\end{cases}
\]

For the homotopy of the bottom slice in the remaining two cases, namely \(n \equiv 1, 2 \pmod{4}\), we need some auxiliary computations.

Proposition 7.3. Let \(k \geq 1\). The nontrivial homotopy Mackey functors of \(\Sigma^{k^p}Hm\) are

\[
\begin{aligned}
(1) & \quad \pi_{2k}(\Sigma^{k^p}m) \cong \phi^{\ast}_{LDR} \mathbb{F}_2 \\
(2) & \quad \pi_{i}(\Sigma^{k^p}m) \cong g^i \text{ for } i \in [k + 1, 2k - 1] \\
(3) & \quad \pi_{k}(\Sigma^{k^p}m) \cong g^2
\end{aligned}
\]

Proof. The short exact sequence

\[
\phi^{\ast}_{LDR} \mathbb{F}_2 \hookrightarrow m \twoheadrightarrow g
\]

gives a cofiber sequence

\[
\Sigma^{(k-1)p+2}H \phi^{\ast}_{LDR} \mathbb{F}_2 \cong \Sigma^{k^p}H \phi^{\ast}_{LDR} \mathbb{F}_2 \rightarrow \Sigma^{k^p}Hm \rightarrow \Sigma^{k^p}Hg \cong \Sigma^kHg.
\]

The result now follows from Proposition 3.6. \(\square\)

The same argument, using instead the short exact sequence \(\phi^{\ast}_{LDR} \mathbb{F}_2 \hookrightarrow m \twoheadrightarrow g^2\), applies to show

Proposition 7.4. Let \(k \geq 1\). The nontrivial homotopy Mackey functors of \(\Sigma^{k^p}Hmg\) are

\[
\begin{aligned}
(1) & \quad \pi_{2k}(\Sigma^{k^p}mg) \cong \phi^{\ast}_{LDR} \mathbb{F}_2 \\
(2) & \quad \pi_{i}(\Sigma^{k^p}mg) \cong g^i \text{ for } i \in [k + 1, 2k - 1] \\
(3) & \quad \pi_{k}(\Sigma^{k^p}mg) \cong g^2
\end{aligned}
\]

The homotopy of the bottom slice when \(n \equiv 1, 2 \pmod{4}\) is now given by the following result.
Corollary 7.5. For all \(k \geq 1 \), the nontrivial homotopy Mackey functors of \(\Sigma^k F \) are
\[
\pi_i(\Sigma^k F) = \begin{cases}
\mathbb{F}_2 & i = 4k \\
mg & i = 4k - 1 \\
\phi^*_{LDR} \mathbb{F}_2 \oplus g^{4k-2-i} & i \in [2k + 1, 4k - 2] \\
g^{2i-k-1} & i \in [k + 2, 2k].
\end{cases}
\]

Proof. We have the cofiber sequence
\[
\Sigma^k F \longrightarrow \Sigma^k F \mathbb{F}_2 \longrightarrow \Sigma^k M
\]
arising from the short exact sequence of Mackey functors. From the long exact sequence in homotopy we get the desired homotopy for \(i \in [2k + 1, 4k] \) because \(\pi_i(\Sigma^k M) = 0 \) for \(i > 2k \) by Proposition 7.3.

When \(i = 2k \), in the long exact sequence we have
\[
\pi_{2k}(\Sigma^k F) \cong \phi_{LDR}^* \mathbb{F}_2 \oplus g^{2k-2} \rightarrow \phi_{LDR}^* \mathbb{F}_2.
\]
On subgroups of size 2, the map on the right is an isomorphism and thus maps \(\phi_{LDR}^* \mathbb{F}_2 \) isomorphically to the target forcing \(\pi_{2k}(\Sigma^k F) = g^{2k-2} \).

For \(i \in [k + 2, 2k - 1] \) we have
\[
\pi_i(\Sigma^k F) \rightarrow g^{1+2(i-k)} \rightarrow g^3
\]
and thus \(\pi_i(\Sigma^k F) = g^j \), where \(j \geq 2(i-k-1) \).

To show that \(j \leq 2(i-k-1) \), we use the cofiber sequence
\[
\Sigma^{(k-1)p+4} F \mathbb{F}_2 \cong \Sigma^k F \mathbb{F}_2^* \longrightarrow \Sigma^k F \longrightarrow \Sigma^k + H_m \cong \Sigma^{(k-1)p+3} M.
\]
For \(i \in [k + 3, 2k - 1] \) we have the following in the long exact sequence in homotopy:
\[
g^{2(i-k)-5} \rightarrow \pi_i(\Sigma^k F) \rightarrow g^3
\]
and thus \(\pi_i(\Sigma^k F) = g^j \), where \(j \leq 2(i-k-1) \). When \(i = k + 2 \), we have \(\pi_i(\Sigma^k F) = g^2 \) as desired since \(\pi_i(\Sigma^{(k-1)p+4} F \mathbb{F}_2) = 0 \) and \(\pi_i(\Sigma^{(k-1)p+3} M) = g^2 \) by Proposition 7.4. For \(i < k + 2 \) we can see from either long exact sequence that \(\pi_i(\Sigma^k F) = 0 \).

The homotopy of the slices in dimension congruent to 2 modulo 4 is much simpler.

Proposition 7.6. The nontrivial homotopy Mackey functors of \(\Sigma^{k+1} F \phi^*_{LDR} \) are
\[
\pi_i(\Sigma^{k+1} F \phi^*_{LDR}) = \begin{cases}
\phi_{LDR}^* \mathbb{F}_2 & i = 2k + 1 \\
g^3 & i \in [k + 2, 2k]
\end{cases}
\]

Proof. This follows directly from Proposition 3.6, given that \(\Sigma^{c+2} C_2 \mathbb{F}_2 \cong \Sigma^2 H C_2 \mathbb{F}_2 \).

8. The Slice Spectral Sequence

The Mackey functor-valued slice spectral sequence for \(\Sigma^n H \mathbb{F}_2 \) must recover that the only nontrivial homotopy Mackey functor is \(\pi_n(\Sigma^n H \mathbb{F}_2) \cong \mathbb{F}_2 \). This Mackey functor already occurs in the bottom slice, and all higher slices get wiped out by the spectral sequence. To a large extent, the answer forces many of the differentials. Furthermore, the slice spectral sequence must restrict to recover the slice spectral sequence on each cyclic subgroup, which further allows us to deduce many differentials. In practice, only a few differentials require further argument. We discuss this in several examples.
Example 8.1. The first example which has a nontrivial slice tower is Σ^5HF_2. The slices are

$$P^5_5(\Sigma^5HF_2) = \Sigma^{p+1}H_{5}, \quad P^6_6(\Sigma^5HF_2) \simeq \Sigma^3HF_{LDR}F_2, \quad P^8_8(\Sigma^5HF_2) = \Sigma^2HG.$$

Thus the 6 and 8-slices are Eilenberg-Mac Lane. The homotopy Mackey functors of the 5-slice are given in Corollary 7.5.

In the slice spectral sequence, the only possibility is that we have differentials

$$d_1 : \pi_4(P^5_5) \cong m \rightarrow \pi_3(P^6_6) = \phi^*_{LDR}F_2;$$

and

$$d_2 : \pi_3(P^6_6)/d_1 \rightarrow \pi_2(P^8_8) \cong g.$$

The slice spectral sequence for Σ^5HF_2 is just the suspension of that for Σ^5HF_2. Those for Σ^7HF_2 and Σ^8HF_2 are not much more complicated. There is only one possible pattern of differentials, which is displayed in Figure 8.4.

Example 8.2. In the slice spectral sequence for Σ^9HF_2, displayed in Figure 8.5, almost all differentials are forced by the fact that only $\pi_9(P^9_9\Sigma^9HF_2) \cong F_2$ can survive the spectral sequence. The sole exception is that the summand g of

$$\pi_6(P^9_9\Sigma^9HF_2) \cong \phi^*_{LDR}F_2 \oplus g$$

can support either a d_3 to $\pi_5(P_{12}^{12}\Sigma^9HF_2) \cong g^3$ or a d_5 to $\pi_5(P_{14}^{14}\Sigma^9HF_2) \cong g^3$.

To see that it must in fact support the shorter d_3, we use that the map

$$\Sigma^9HF_2 \cong \Sigma^{p+5}HF_2^* \rightarrow \Sigma^{p+5}Hf$$

(see Example 6.13) induces an equivalence on 9, 10, and 12-slices. Since $\Sigma^{p+5}Hf$ only has nontrivial π_9 and π_8 by Corollary 7.5, there must be a d_3 in the slice spectral sequence for $\Sigma^{p+5}Hf$ in order to wipe out the π_6 and π_5.

Example 8.3. Most differentials in the slice spectral sequence for $\Sigma^{10}HF_2$, which is displayed in Figure 8.5, are forced by the fact that only $\pi_{10}(P_{10}^{10}\Sigma^{10}HF_2)$ survives.

To see that $d_2 : \pi_6(P_{10}^{10}) \rightarrow \pi_5(P_{12}^{12})$ is injective, we use that the map

$$\Sigma^{10}HF_2 \cong \Sigma^{p+6}HF_2^* \rightarrow \Sigma^{2p+2}Hw^*$$

(see Example 6.14) induces an equivalence on 10 and 12 slices. The cofiber sequence

$$\Sigma^{p+4}HF_2 \rightarrow \Sigma^{2p}Hw^* \rightarrow \Sigma^{2p+1}HG$$

shows that $\pi_6(\Sigma^{2p+2}Hw^*) = 0$, which forces the claimed d_2-differential.

Similarly, the g summand of $\pi_7(P_{10}^{10})$ supports a d_4 to the 14-slice. This can be seen by using the map to $\Sigma^{p+5}C$, which induces an equivalence of slices up to level 14. The cofiber sequence

$$\Sigma^{p+4}Hf \rightarrow \Sigma^{p+3}C \rightarrow \Sigma^{p+3}g^2$$

shows that $\pi_5(\Sigma^{p+3}C) = 0$ and $\pi_6(\Sigma^{p+3}C) \cong g^2$. This forces the claimed d_4-differential.
Figure 8.4. The slice spectral sequence over C_2 and $C_2 \times C_2$, $n = 7, 8$
Figure 8.5. The slice spectral sequence over C_2 and $C_2 \times C_2$, $n = 9, 10$
Figure 8.6. The slice spectral sequence over $C_2 \times C_2$, $n = 11, 12$
Figure 8.7. The slice spectral sequence over $C_2 \times C_2$, $n = 20$
Appendix: Mackey functors

<table>
<thead>
<tr>
<th>name</th>
<th>Mackey functor</th>
<th>description</th>
<th>reference</th>
</tr>
</thead>
</table>
| \(F_2 \) | \[
\begin{array}{c}
1 \\
F_2 \\
\end{array}
\] | \(F_2 \) \(F_2 \) \(F_2 \)
| \(F_2^* \) | \[
\begin{array}{c}
1 \\
F_2 \\
\end{array}
\] | \(H F_2^* \simeq \Sigma^{4-\rho} H F_2 \) Proposition 4.2

\(\varrho \) 0 0 0 0, \(g = \phi_\kappa^*(F_2) \)

\(\underline{f} \) 0 0 0

\(\phi_{LDR}^\underline{f} \) \(\begin{array}{c} F_2 \\
F_2 \\
F_2 \end{array} \)

\(\phi_{LDR}^{F_2} \) \(\begin{array}{c} F_2 \\
F_2 \\
F_2 \end{array} \) Notation 2.5
Table of Mackey Functors

<table>
<thead>
<tr>
<th>Name</th>
<th>Mackey Functor</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$\mathbb{F}_2 \to \mathbb{F}_2 \to \mathbb{F}_2$</td>
<td>$\text{coker}(f \to \mathbb{F}_2)$</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>$\mathbb{F}_2 \oplus \mathbb{F}_2 \to \mathbb{F}_2 \to \mathbb{F}_2$</td>
<td>$Hmg \simeq \Sigma^{n-2}Hm^*$</td>
<td>Proposition 4.8</td>
</tr>
<tr>
<td>w</td>
<td>$\mathbb{F}_2 \to \mathbb{F}_2 \to \mathbb{F}_2$</td>
<td>$\text{ker}(\mathbb{F}_2 \to g)$</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>$\mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{F}_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Department of Mathematics, The University of Kentucky, Lexington, KY 40506–0027
E-mail address: bertguillou@uky.edu

Department of Mathematics, California State University - Dominguez Hills, Carson, CA, 90747
E-mail address: cyarnall@csudh.edu