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ON THE HOMOTOPY THEORY OF K-LOCAL SPECTRA AT 
AN ODD PRIME 

By A. K. BOUSFIELD* 

Introduction. In this paper we investigate the algebraic structure of 
the stable homotopy category localized with respect to K-homology theory 
at an odd prime, and we give a purely algebraic classification of all homo- 
topy types in that localized category. 

Before describing our results more fully, we must recall the theory of 
homological localizations of spectra (see [5], [7], [11]). Let HoS denote the 
homotopy category of CW-spectra (see [5]) or any of the other equivalent 
versions of Boardman's stable homotopy cateogry. A spectrum E E Ho' 
determines a homology theory E* with E*X = 7-*E A X for each X E Ho', 
and a spectrum Y E Ho' is called E*-local if each E*-equivalence A -+ B in 
Ho' induces an isomorphism [B, Yn* [A, Yn*. For each E E Ho' there is 
a natural E*-localization which assigns to each spectrum X E Ho' an 

E*-equivalence X -_ XE in Ho' such that XE is E*-local. It follows that the 
full subcategory of E*-local spectra in HoS is equivalent to the category of 
fractions obtained from Ho' by giving formal inverses to the E*-equiva- 
lences. In this paper, we are interested in the case E = K(p) for an odd 
prime p where K(P) is the spectrum of nonconnective complex K-theory 
localized at p. However, we often find it convenient to replace K(P) by its 
summand E(1) from the well-known splitting K(P) vPi---o2 S2iE(1) (see 
Section 4). Since the K(p)*-equivalences in Ho5 are the same as the E(1)*- 
equivalences, it follows that the K(p)*-localization in Ho5 is the same as the 

E(1)*-localization. This localization has previously been studied by Ad- 
ams-Baird (unpublished), Ravenel [11], and the author [7]. We remark 
that it is the next after the rational localization in Ravenel's hierarchy of 
localizations which take account of progressively higher sorts of periodicity 
phenomena in p-local stable homotopy theory. 

In order to approach the homotopy theory of a K(P)*-local (= E(1)*- 
local) spectrum X, we first consider the homology groups K(P)*X or 
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E(1)*X together with appropriate primary operations. The required infor- 
mation can be captured by treating K(P)*X or E(1)*X as a comodule over 
the coalgebraK(p)*K(p) orE(l)*E(1). However, this comodule structure is 
somewhat awkward to work with, and we find that exactly the same infor- 
mation is more conveniently captured by the stable Adams operations 1k 

with k prime to p. To formalize this, we construct graded abelian catego- 
ries (i(p)* and 63(p)* whose objects have the algebraic properties of the 
homology groups K( )*X and E(1)*X respectively with their stable Adams 
operations. We show that (i(p)* and 63(p)* are canonically equivalent to 
each other and we use 63(p)* in most of our subsequent work. In the last 
section (Section 10) we demonstrate that (i(p)* and (5(p)* are canonically 
equivalent to the categories of K(P)*K(p)-comodules and E(l)*E(1)-com- 
odules respectively. This is of independent interest and generalizes a some- 
what similar equivalence obtained by Ravenel [11] for torsion E(1)*E(1)- 
comodules using a very different approach. In Sections 1, 3 we construct 
(i(p)* and 63(p)* as graded periodic versions of ungraded abelian catego- 
ries (i(p) and (5(p) which resemble the abelian category of Adams [1] but 
differ because we impose rational diagonalizability conditions on our oper- 
ations and work in a p-local nonfinitely generated context. In Section 5 we 
give a very simple alternative construction of 63(p) involving a single oper- 
ation ,r, and we see that a torsion object of 63(p) is merely a p-torsion 
abelian group with a locally nilpotent operator. Interestingly enough, as 
noted by Ravenel [11], these same torsion objects have been studied by 
Iwasawa in connection with cyclotomic fields (see [8], [9], [12]). The struc- 
ture of 63(p)* is likewise very accesible since that category is equivalent to 
the product of 2p - 2 copies of 63(p). In Section 7 we obtain detailed 
results on the groups Ext"j(P)* (M, N) for s = 0, 1, 2 and show that they all 
vanish for s > 2 so that the objects of 63(p)* have injective dimension c 2. 
A slightly weaker version of this vanishing result was obtained by Adams- 
Baird in the equivalent category of K(P)*K(p)-comodules (see [4]). 

In order to investigate the homotopy theory of E(1)*-local (= K(p*- 
local) spectra, we need the E(1)*-Adams spectral sequence. In Section 8 we 
construct a version which has 

Es,t (X Y) 
=z 

Ext3t(p)* (E(l)*X, E(l)*Y) 

for arbitrary X, Y e Hos and converges strongly to [XE(l), YE(1)] *. We next 
note that EMt(X, Y) = 0 for s > 2, so that the only possible nontrivial 
differential is 
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d2: Hom,33(p)* (E(l)*X, E(1)* Y)t -+Ext,33(+)*2tl(E(l)*X, EM1* Y). 

To determine this d2 algebraically, we introduce the canonical E(1)*-k- 
invariant 

kw E Ext 2,1 P)*(E(1)* W, E(1)*W) 

for each spectrum W E Hos and prove the general formula d2f = k y of + 
(- )t+ lf ? kx. Our definition of k w involves the theory of E(1)*-Moore 
spectra. For each object G E 63(p) and each n E Z, we build an E(1)*-local 
spectrum 9R(G, n) with an isomorphism E(1)n 91(G, n) = G in 63(p) and 
with E(1)iM(G, n) = 0 for i * n mod 2p - 2. We call 91(G, n) an E(1)*- 
Moore spectrum and show that it is unique up to a canonical equivalence 
and depends functorially on G E 63(p). Also for each object H E (B(p)* we 
build a natural E(1)*-local spectrum 9(H) = VML03 91(Hn n) with 
E(1)* 9(H) ~ H in (5(p)*, and we call 9(H) a generalized E(l)*-Moore 
spectrum. For W E Ho', our E(1)*-k-invariant kw measures the obstruc- 
tion to finding a map W -+ 1(E(1)* W) inducing the identity onE(1)* W. 

In Section 9 we arrive at our main results on the algebraic classifica- 
tion of the E(1)*-local (= K(P)*-local) spectra. First we easily see that two 
spectra X and Y in Ho' have equivalent E(1)*-localizations if and only if 
the pairs (E(1)*X, kx) and (E(1)* Y, k y) are isomorphic. Then we prove 
that for each object M E (B(p)* and each element K E Ext2jP) (M, M) there 
exists a spectrum W E Hos such that (E(1)* W, k w) is isomorphic to (M, K). 
Indeed, we prove that this W may be chosen to be a finite CW-spectrum if 
and only if M is of finite type over Z(p). We arrive at the result that the 
homotopy types of the E(1)*-local spectra correspond to the isomorphism 

2,1 classes of the pairs (M, K) with M E (B(p)* and K E Extffl(,,)*(M, M). In fact, 
we obtain much stronger results on the homotopy category Hos( 1) of E(1)*- 
local spectra. Using the E(1)*-Adams spectral sequence we algebraically 
determine the bigraded category obtained from HoSE1) by taking Adams 
filtration quotients, and also determine the full subcategory of Hos(1) given 
by the generalized E(1)*-Moore spectra. In particular, for M, N E (p)* 
we obtain canonical isomorphisms 

[X(M), 91(N)]n ?) Ext3'(p)* (M, N) 

such that compositions of homotopy classes correspond to Yoneda prod- 
ucts. We remark that a spectrum W E Ho'(1) is equivalent to a generalized 
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E(1)*-Moore spectrum if and only if k w = 0. Some examples of spectra 
with this property are: (i) the E(1)-module spectra, (ii) the spectra W E 

HOE(1) such that E(1)* W vanishes in all even (or odd) dimensions, and (iii) 
the spectra XZ/p for arbitrary X E Ho'(1). We have not included a proof of 
the required splitting in case (iii) since we hope to deal with it in a future 
note. 

It would, of course, be desirable to obtain a still more complete alge- 
braization of the homotopy theory of E(1)*-local (= K(p)*-local) spectra. 
In subsequent work we have constructed a certain algebraic homotopy cat- 
egory in which differential injective 6B(p)*-objects are used in place of 

E(1)*-local spectra, and we have obtained results suggesting that our alge- 
braic homotopy category may be equivalent to that of E(1 )*-local spectra. 

Although we work over an odd prime throughout this paper, we are 
able to partially extend our results to the prime 2, and we hope to deal with 
that case in a future paper. In particular, we can extend our algebraic clas- 
sification of homotopy types to cover the K(2)*-local spectral X E Hos such 
that 1:KO(2)*X- KO(2)*X is zero or, equivalently, such that the se- 
quence 

** > K(2)*X K(2)*X 1 A K(2)*X . 

is exact. For such spectra X, the K(2)*K(2)-comodules K(2)*X have injec- 
tive dimension c 2 and the methods of this paper are applicable. To deal 
with the general case where K(2)*X may have infinite injective dimension, 
we are developing other methods using K(2)*X together with KO(2)*X. 

1. The abelian categories a(p) and (ip)*. Let p be a fixed odd 
prime throughout this paper. Our first aim is to construct the abelian cate- 
gory (i(p) whose objects have the formal properties of the homology groups 

Kn (X; Z(p)) = K(p)nX with their stable Adams operations for X E Hos and 
n E Z (see Section 2). 

Let {-Mod denote the category of modules over the group ring 

Z(p)(Z * ) where, in general, R* denotes the multiplicative group of units 
in a ring R with identity. For M E +-Mod let 1k: M = M denote the auto- 
morphism given by multiplication by k E Z*). We construct the finitely 
generated part of (i(p) as follows. Let (@(p)f be the full subcategory of 
+-Mod given by all M E +-Mod such that: 

(1.1). M is finitely generated over Z(p); 
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(1.2). for each m 2 1 the action of Z *) on M/p'77M factors through 
the quotient homomorphism Z(* -p (Z/p")* for sufficiently large n; and 

(1.3). the vector space M O Q has a direct sum decomposition MO 
Q = ?3iez Wi such that (ikk ?) 1)W = k'w for each w E Wi, i E Z, and 
k EZ(p). 

LEMMA 1.4. If Mis an object of ((p)1and ifHis a ,-Mod-subobject 
of M, then H and M/H are in @( p)f. 

Proof. To show (1.2) for H, let m 2 1 and choose a sufficiently large 
s such that H n psM C pm H. Then choose a sufficiently large n such that 
the action of Z*) on M/psM factors through (Z/pn )*. Since H/pmH is a 
subquotient of M/psM, it follows that the action of Z(p) on H/pmH also 
factors through (Z/pn)*. To show (1.3) for H, let M O Q = ?)iez Wi be 
given by (1.3) for M. It will suffice to show H O Q = 6?icz Vi where Vi = 
wi n (H O Q). For a fixed k E Z *) with k ? ? 1, the operator 1k 01 :M 

(g Q -M Q is diagonalizable with Wi = {wEMOQI(4kOl)W = 

k1w }. Thus Vi = ( E HO Q I ({k (0 1)v = k1v }. Since the minimal polyno- 
mial of k (? 1 :HO Q - H ( Q divides that of 4k ) 1 :M(g Q - M(i Q, 
this restricted operator is also diagonalizable and H 0 Q = ?iez Vi as 
desired. Thus H is in @t(p)f, and an easy argument shows that M/H is 
likewise. 

(i(p)f is also closed under finite direct sums. Thus (i(p)f is an abelian 
category. 

1.5. The abelian category Ct(p). For M E ,6-Mod and x E M, let 
C(x, 46) E {-Mod denote the ,6-Mod-subobject of M generated by x. Let 
(i(p) be the full subcategory of {-Mod given by all M E +-Mod such that 
C(x; ,6) is in Ct(p)f for each x E M. Using the properties of @( p)f, one shows 
that if M is in (i(p) and if H is a ,6-Mod-subobject of M, then H and M/H 
are in (i(p). Furthermore (i(p) is closed under arbitrary direct sums. 
Hence (i(p) is an abelian category. One easily checks that the finitely Z(p)- 
generated objects of (i(p) are the same as the objects of @(p)f. Moreover, 
thep-torsion objects of (i(p) are the same as the discretep-torsion abelian 
groups with continuous Zp *-actions, where Zp* = limp (Z/pn )* is the to- 
pological group of units in the p-adic integers. In particular, for a p-tor- 
sion objectM E (i(p) andx eMwithpmx = 0, the action of Z*) on C(x; ,6) 
E @t(p)f factors through (Z/pn )* for some n because pt C(x; 4) = 0, and 
this induces an action by Zp * on C(x; 4'). These actions for the various x E 
M combine to give the continuous action by Zp * on M. 
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For i E Z and M E {-Mod, let T1M E {-Mod equal M as a Z(p)-module 
but have 4k: T'M -+ TM equal to ki' 4k :M -- M for each k E Z *). This 

defines a categorical automorphism TV: +-Mod --+ ,-Mod. Let T = T1 and 
note that T1 is the ith iterate of T. 

LEMMA 1.6. For i E Z, T1 restricts to a categorical automorphism 
T': a(p) -((p). 

Proof. For M E CI(p)f we claim that T1M is in G(Xp)f. For m 2 1 
choose n > m such that the action of Z*) on M/pmM factors through 
(Z/IP)*. Then ipk equals pk+pnx on M/pmM for each k E Z *) and x E Z(p), 
and thus ki'Pk equals (k + pnX)i1Pk?P"x on M/pmM since pn annihilates 
M/pmM. Thus the action of Z*) on TiM/pmTTM factors through 
(Z/pn )*. The required direct sum decomposition of T'M 0 Q can be ob- 
tained by re-indexing the decomposition of MO Q. Thus TIM is in @3(p)f, 
and the lemma follows easily. 

1.7. The abelian category a(p)*. Let (i(p)* be the abelian category 
such that an object M E (i(p)* is a collection of objects Mn E (i(p) for n E Z 
together with isomorphisms u: TMn Mn+2 in (i(p) for all n, and a 
morphismf :M -+ N in (i(p)* is a collection of morphismsfn :Mn -+ Nn in 

(i(p) for n E Z such that ufh = fn+2U for all n. Note that an object M E 

(i(p)* is a graded module over the graded algebra Z(p)[u, u-1] with 
deg u = 2, and has isomorphisms ui: TMn = Mn+2i in (i(p) for all i, 
n E Z. Thus M is determined (up to a canonical isomorphism) by Mo, M1 E 
(i(p), and (i(p)* is equivalent to the product category (i(p) X (i(p). 
There is a suspension automorphism S: ai(p)* -( C(p)* for t E Z, where 

(WtM)n = Mn-, E CI(p) for each n E Z and where E'M has the same 
u-action as M. 

2. The spectrum K(p) and its homology theory. We now outline for 
later use some properties of the spectrum K(p) and show that the homology 
K* (X; Z(p)) = K(p)*X is in (i(p)* for each spectrum X. 

Recall that the complex K-theory spectrum K E Hos is a commutative 
ring spectrum with 7-*K = Z[u, u - 1 ] where u E 7i-2K is the canonical gen- 
erator. Thus K(p) E Hos is also a commutative ring spectrum with 7i*K(p) 
= Z(p) [u, u- 1J. The following lemma (essentially due to Adams-Clarke 
[6]) shows that all maps K(P) A ... A K(P) 

- 
K(P) in Hos are rationally 

detectable and are thus detectable by their induced actions 7r*K(p) 0 ... 

0 7r*K(p) -+ 1i*K(p). Let KQ E HoS denote the rationalization of K. 
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LEMMA 2.1. The rationalization map 

p [K(p) K(p)]I*An [K KQI* 

is an injection for n 2 1 (where XAn denotes the smash-product of n copies 
of X). 

Proof. By [6], K*K is a free left 7r*K-module. Thus KAn is equiva- 
lent to a wedge of copies of K, and K*(K An) is a free left 7r*K-module. By 
[5], for any K-module spectrum M E Hos, there is a short exact sequence 

0 -+ Ext.*K(K*X, 7r*M)*+? -+ [X, M]* J Hom.*K(K X, 7r*M)* 0 

wherej is the obvious map. Thus there is an isomorphismj: [K An, M]* 

Hom7*K(K*(K An), 7r*M)*, and hence the canonical map p': [K An, K(p)]* 
[K An, KQI* is an injection. Since the rationalization map p is equivalent 

to p', it is also an injection. 

For each k E Z *) there is an Adams map 
k 

K(p) -+ K(p) in Hos which 
carries ui E 7r2iK(p) to k1u1 E 7r2K(p) for each i E Z. These may be con- 
structed as composites of classical Adams maps (where k is an integer 
prime to p) and homotopy inverses of such maps. They satisfy the condi- 
tions = land Ah k = V,hk for h, k E Z * ), so that the group Z * ) acts 
on K(p) in Hos. Moreover, kk :K(p) - K(p) is a ring spectrum equivalence 
for each k E Z*). Now for X E HoS, K*(X; Z(p)) is a graded module over 

7r*K(p) = Z(p) [u, u 1], and the Adams maps induce Adams operations 
4/k :K*(X; Z(p)) -+ K*(X; Z(p)) for k E Z *). Once checks that 4lk(uix) = 

kiui4 k(x) for each k E Z *), i E Z, and x E K*(X; Z(p)). Thus, multiplica- 
tion by ui induces an isomorphism ui: TK,,( (X; Z()) K,,?2i(X; Z(W)) in 
+-Mod for each i, n E Z. 

PROPOSITION 2.2. For each X E Hos, K*(X; Z(p)) is in @(p)*. 

Proof. Using the above structure, it suffices to show that Kn (X; 
Z(p)) is in (i(p) for each n E Z. By Lemma 13.7 of [5], for each x E KnX 
there exists a finite CW-spectrum W and a mapf: W -+ X such that x is in 

f* (Kn W) and K*W is a free 7-*K-module. Since the rationalized spectrum 
WQ is equivalent to a wedge of rationalized sphere spectra, Kn (WQ; Z(p)) 
is clearly in (i(p). Applying the results of 1.5 to the monomorphism Kn (W; 

Z(p)) 
- Kn (WQ; Z(p)) and to the epimorphism Kn (W; Z(p)) 

-- f* (Kn (W; 
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Z(p))), one shows thatf*(K,(W; Z(p))) is in (i(p). Since each element of 
K,(X; Z(p)) lies in such an image, K,(X; Z(p)) is also in (i(p). 

For each X E Hos and t E Z, there is a natural isomorphism K*(EtX; 
Z(p) ) = 2tK*(X; Z(p)) in (i(p)*. 

3. The abelian categories 63(p) and 63(p)*. In our subsequent 
work it will be convenient to replace the spectrum K(p) by its summand 
E(1). To permit that, we introduce the abelian category 63(p)* which is the 
E(1)-theoretic analogue of R(p)*, and we prove that 63(p)* is actually 
equivalent to R(p)*. Our first aim is to construct the ungraded abelian 
category 63(p) whose objects have the formal properties of the homology 
groups E(l),X with their stable Adams operations for X E Hos and n E Z 
(see Section 4). 

For n 2 0 let IF denote the quotient of (Z/p'+1 )* by its subgroup of 
order p - 1, so that I" is a cyclic group of order pn. We construct the 
finitely generated part of 63(p) as follows. Let 63(p)j be the full subcate- 
gory of *4-Mod given by all M E {-Mod such that: 

(3.1). M is finitely generated over ZQ,); 
(3.2). for each m 2 1, the action of Z *,) on M/p"'M factors through 

the quotient homomorphism Z*,) -r F" for sufficiently large n; and 
(3.3). the vector space M (O Q has a direct sum decomposition MO 

Q = (?jez Wj(p-1) such that (ok ? 1)W = ki(P-1)w for each w E Wj(p_1), 
jeZ, and k eZ*). 

As in 1.4, if M is an object !B(p)f and if H C M is a ,6-Mod-subobject 
of M, then H and M/H are in (B(p)f . Moreover, (B(p)f is also closed under 
finite direct sums. Thus (B(p)f is an abelian category, and it is clearly a full 
subcategory of (i(p)f 

3.4. The abelian category (B(p). Let (5(p) be the full subcategory of 
{-Mod given by all M E {-Mod such that C(x; 46) is in 6b(p)y for each x E 
M. Thus (5(p) is a full subcategory of (i(p). As in 1.5, if M is an object of 
(5(p) and if H is a ,6-Mod-subobject of M, then H and M/H are in (5(p); 
and (5(p) is closed under arbitrary direct sums. Hence Bs(p) is an abelian 
category. One easily checks that the finitely Z(p)-generated objects of 63(p) 
are the same as the objects of 63(p)f. Moreover, as in 1.5, the p-torsion 
objects of 63(p) are the same as the discrete p-torsion abelian groups with 
continuous F-actions where F = limn Fn is the topological quotient group 
of ZpA* by its subgroup of order p - 1. As noted by Ravenel [11], these 
torsion objects have been studied by Iwasawa in connection with cyclo- 
tomic fields (see [8], [9], [12]). 
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LEMMA 3.5. Forj E Z thefunctor Tj(P- 1): +-Mod -{ -Mod restricts 
to a categorical automorphism Tj(P- 1): 6B(p) -C(p). 

Proof. For M E 63(p)f and i = j(p - 1), we claim that T1M is in 
63(p)j. For m 2 1 choose n 2 m such that the action of Z*) on M/pmM 
factors through r n-. Then the action of Z *) on TiM/prn T1M factors 
through (Z/p')* as in 1.6. If k e Z*) maps to the identity of Ifl`, then 
k P -l 1 modp', and thus ki k = I1,k = 1 on M/pm M. Hence the action 
of Z *) on T1M/p " T1M factors through Ifl" The required direct sum 
decomposition of (T1M) 0 Q can be obtained by re-indexing the decompo- 
sition of M 0 Q. Thus T1M is in 63(p)f and the lemma follows easily. 

3.6. The abelian category 6B(p)*. Let (3(p)* be the abelian cate- 
gory such that an object M E B3(p)* is a collection of objects Mn E (3(p) for 
n E Z together with isomorphisms v: TP 1M, = Mn+2p-2 in 63(p) for all 
n, and a morphismf: M -+ N in (B(p)* is a collection of morphismsfn: M,, 
-+ N,, in 63(p) for n E Z such that vf =fn+2p2v for all n. Note that an 
object M E B(p)* is a graded module over the graded algebra Z(p) [v, v - 1 ] 
with deg v = 2p-2, and has isomorphisms vi: Tj(P -)Mn ~ Mn +2j(p-1 
in 6B(p) for allj, n E Z. Thus M is determined (up to a canonical isomor- 
phism)byMo,M1, .. ., M2p3 E 63(p), and 63(p)* is equivalent to the (2p 
- 2)-fold product category 63(p) X ... X >53(p). There is a suspension 
automorphism St: 6B(p)* -- 63(p)* fort E Z where (NtM)n = Mn_t e 6B(p) 
for each n E Z and where EtM has the same v-action as M. 

Before proving that 63(p)* is equivalent to (i(p)*, we must first de- 
compose (i(p) as a product of p - 1 subcategories which are equivalent to 
63(p). For i E Z let T163(p) be the full subcategory of (i(p) given by all T1N 
for N E 63(p) (or equivalently by all M E C3t(p) with T-'M in 63(p)). Note 
that T1(3(p) is categorically equivalent to 63(p) for each i E Z, and that 
Ti63(p) equals TJ 63(p) for i j mod p -1. For M E a-t(p) and i E Z, let 
Mli] C M be the natural subobject 

MUl] = {x E MI C(x; 4) E TV(B3(p)} 

Clearly M[i] is in T6B3(p) and contains all subobjects of M in T" 63(p). Also 
M['] = M[1] for i j mod p - 1. 

PROPOSITION 3.7. Each M e C3t(p) is the direct sum of its natural 
subobjects M[l] E T163(p)for i = 0, 1, ., p - 2. Thus (@(p) is the prod- 
uct of its subcategories TV(B(p) for i = 0, 1, . . ., p - 2. Furthermore, 

T1 (M1i ]) = (TiM)hi?J]for M E C3t(p) and i,j E Z. 
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This will be proved in 3.10, and it implies 

3.8. The equivalence of 39(p)* and (i(p)*. Using the embedding 

co:Z(P)[v, v -* Z(p)[u, u -] of graded algebras with co(v) = uP-1, de- 
fine a functorL: 63(p)* - (i(p)* byL(N) = Z(p) [u, u - 1] ?z(p)[v,v1 ]N for 
NE(p( )* wherepk(um0(g x)=kmum 4,6kxforkeZ(p),meZ,andxE 
N. Thus (LN)n = ViP-- T'N _2i in (i(p) for each n E Z. Also define a 
functor R at(p)* -( B(p)* by R(M) = M[?] for m E (i(p)* where vx = 

uP- x for each x E M[?]. Now 3.7 implies that the functors L: 6B(p)* 

(i(p)* and R @t(p)* -( B(p)* are equivalences with L left adjoint to R. 
These equivalences respect suspensions. 

For the proof of 3.7 we need a lemma involving the cyclic group J = 

{I j EZpA* IjP-l = 1 } of order p - 1. Consider the p-adic group ring ZpAJ 
and let [j] E ZpAJ denote the element corresponding toj E J. 

LEMMA 3.9. In ZpAJ there exist elements eo, e, .. ., ep2 such that: 

(i) ejej = ei and eiek = Ofor each i = k. 
(ii) eO + el + * + ep2 = I 

(iii) [j] ei = j1eifor each j E J and each i. 

Proof. Let t be a generator of J. In the polynomial algebra ZPA [x], 
note that 

xp-l- = (X-t0)(X - 1) ... (X-P ~p2) 

and let bi E Zp[x] denote (x P - 1)/(x -{) for 0 s i p - 2. Using the 
ring homomorphism P: ZA [x] -+ ZAJ with <(x) = [a], let di = p(bi) in ZAJ 

for each i. Then ([a] - 0 )dj = 0 and didk = 0 for each i * k since ker f is 
the ideal generated by xP - l-1. Using the quotient map ZPA -Fp to the 
prime field Fp, let di eFpJ be the image of di for each i. Then do, . . ., dp_ 
2 form a Fp-basis for FpJ because they are eigenvectors of [f] :FpJ -i FpJ 
with distinct eigenvalues. Consequently, do, . . ., dp-2 form a ZpA-basis for 
the free ZpA-module ZAJ. Thus there exist elements ao, . , a E Z such 
that aodo + * + ap-2dp-2 =1 in ZpAJ, and we let ei = aidi for each i. 
Clearly eiek = O for each i * k, eo + * * * + ep2 = 1, and [f]ei = (1ej for 
each i. The other required properties follow trivially. 

3.10. Proof of 3.7. We first show M = G9V' o2 M[i] for M ei(p)f. 
For m 2 1, the ZpA*-action on M/pmM in 1.5 restricts to aJ-action, so M/ 
pmM is a ZpAJ-module. Thus there is a decomposition M/pmM = Wi_--02 
ei(M/pmM) by 3.9. We form the arithmetic square 
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M b- MA 

which is a pull-back diagram in +-Mod involving the p-adic completion 
MA = limm M/pmM, and we now have the following decompositions: 

p m~iO p-2 
Mp A G) PiM A where PiMp^ = lim ei(MlpmM), 

p-2 
Mp^ Q= 0Pi(Mp^?Q) where Pi(MAp Q)=PM )Q, and 

p-2 
M?Q = 0 Pi(M?Q) where Pi(MWQ)= 0 W+(p-1) 

i=O jEz 

using the eigenspace decomposition M i Q = ?e-z Wi of Section 1. We 
claim that c t I :MO( Q -+ MpA Q respects the Pi-decompositions. To see 
this, choose a finitely generated free Z(p)-module F C M 0 Q such that F 
contains the image of M -+ M 0 Q and has a decomposition F = ?iez Fi 
with Fi C Wi for each i E Z. Now c 0 1 :FO( Q - Fp Q clearly respects 
the Pi-decompositions, and the above claim follows by a naturality argu- 
ment using the map M -+ F in @3t(p)j. Let M = )Pj-O-02 PiM be the decompo- 
sition induced via the arithmetic square. It is straightforward to check that 
PiM is in T1GMp) and Pi(M[i]) = Mi'] for each i. Consequently, PiM = 

Mi]l and M = 0PU-7o02 Mi]l. The proposition now follows easily. 

4. The spectrum E(1) and its homology theory. It has been shown 
by Adams [2] and Anderson-Meiselman (unpublished) that the spectrum 
K(p) splits into a wedge VI X21E(2 ) involving a certain spectrum E(1) E 
Hos. We now recover that result and develop basic properties of the spec- 
trum E(1) corresponding to those of K(p). We show that E(1)*X is in the 
abelian category (5(p)* for each X E Hos and explain how E(1)*X and 

K(p)*X determine each other. 

4.1. The spectrum E(1). By 3.7 the homology theory K(p)* on Hos 
contains a homology subtheory (K(P)*)[?]. Thus by the Brown representa- 
bility theorem for homology theories (see 4.3), there exists a spectrum E(1) 
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and map w:E(1) - K(p) in HoS such that the induced map E(1)*X 
K(p)*X is an injection onto (K(P)*X)[?] for each X E Hos. We choose such 
an E(1) and w. Using X = S we see that w*: 7riE(1) = 7riK(p) = Z(p) for i 
= 0 mod 2p - 2 and 7riE(1) = 0 otherwise. Thus there is an equivalence 

VPi=o 22iE(1) K(p) given by u%w on 2iE(1). Now 2.1 implies that the 
rationalization map [E(1)An, E(1)]* -+ [E(1)An, E(l)QI* is an injection for 
n 2 1, and consequently [E(1)An, E(1)]i = 0 unless i 0 mod 2p - 2. 
Hence E(1) inherits structures corresponding to: the multiplication u : K(p) 
A K(p) -+ K(p), the unit o : S -+ K(p), and the Adams maps lk: K( p) K( p 
for k E Z *). Specifically, there exist unique maps , :E(1) A E(1) -E(1), 
oz:S - E(1), and l1,k :E(1) -+ E(1) in Hos for k E Z *) such that 

E(1) A E(1) 8> E(1) S > E(1) E(1) > E(1) 
|wAw |w 1 

a~~~~~~~~~ 
K(p) A K(p) / K(,)) 5 K(p) K(,>, K(,)) 

commute in Hos. With these maps, E(1) is a commutative ring spectrum, 
and 4/k :E(1) -+ E(1) is a ring spectrum equivalence with 4 1 = 1 and 1h A 

ik = l1,hk for h, k E Z *) because of the corresponding properties for K(p). 
Let v E 7-2p-2E(1) denote the element such that w*v = u-1 in 
Then clearly 7r*E(1) = Z(p)[v, v-1], and gk:E(1) -+ E(1) carries vi to 
ki(P 1)vJ in 7r2J(p-I)E(1) for eachj E Z and k E Z*). 

4.2. The homology theory E(1)*. For X E Hos, E(1)*X is a graded 
module over 7-*E(1) = Z(p) [v, v-1 ] and the Adams maps bk :E(1) -+E(1) 
induce Adams operations l1,k :E(1)*X -+ E(1)*X for k E Z *). One checks 
that kpk(ViX) = ki(P-l)vj?Pk(X) for each k E Z ),j E Z, and x E E(1)*X. 
Thus, multiplication by vJ induces an isomorphism vJ: Ti(P- 1)E(1)nX 

E(I)n+2j(p-I)X in {-Mod for eachj, n E Z. Since w*:E(1)*X = K*(X; 
Z(p) )[?] is an isomorphism respecting the Adams operations, it now follows 
that E(1)*X is in 3(p)* for each X E Hos. Moreover, the natural isomor- 
phism w* :E(1)*X = K*(X; Z(p))101 in 6~(p)* is adjoint to the natural iso- 
morphism 7r*K(p) (?,*E(l) E(1)*X = K*(X; Z(p)) in Ct(p)* by 3.8. Also, 
for t E Z, there is a natural isomorphism E(l)* (FtX) = S2t(E(l)*X) in 

6(P)* - 

In our construction of E(1), we used the following variant of the 
Brown representability theorem. It is due to Adams and is implicitly con- 
tained in [3]. Let Ab denote the category of abelian groups. A functor 
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h :Hos -i Ab is called half-exact if it carries each cofibre sequence X -i Y 
-+ Z to an exact sequence h(X) -+ h(Y) -+ h(Z), and h is called convergent 
if h(X) is the colimit of { h(Xa) } for each X E Hos where Xa, runs over the 
finite CW-subspectra of X. By a homology theory h* on Hos we mean a 
collection of convergent half-exact functors hn :Hos -+ Ab and natural 
equivalences hn = hn+1E for n E Z. 

THEOREM 4.3. (Adams). Each homology theory h* on Hos is natu- 
rally to A * for some A E Ho'. Each natural transformation of homology 
theories A* -+ B* for A, B E Ho' is induced by some (not necessarily 
unique) map A -+ B in Ho'. 

Proof. Let Ho) denote the homotopy category of finite CW-spectra. 
Adams' arguments in [3] apply in the context of CW-spectra to prove that 
each contravariant half-exact functor H: Ho' -+ Ab is naturally equivalent 
to[-, A]:Ho - Ab for someA EHo', and that each natural transforma- 

tion from [-,A] :Ho - Ab to [-, B] :Ho) -- Ab is induced by some (not 

necessarily unique) map A -+ B in Ho'. Given a homology theory h* on 
Hos, let H:Hos -- Ab be the contravariant functor with H(X) = h0(DX) 
for X E Ho) where D: Ho) -: Ho) is the Spanier-Whitehead duality func- 
tor. By the above result, H is equivalent to [-, A]: Ho: -- Ab for some A E 
Ho5, and one easily deduces that h* is equivalent toA*. The second part of 
the theorem follows similarly. 

5. Simplified constructions of (3(p) and (3(p)*. Recall that Fn de- 
notes the quotient of (Z/pn+1 )* by its subgroup of orderp - 1, so that Fn 
is a cyclic group of order pnf. Let r be a fixed integer generating I", and 
therefore generating Fn for each n 2 1. We now show that the operations 
1k on an object M E (B(p)* are all canonically determined by the single 
operation 1r, and we show that (3(p)* can be identified with a certain cate- 
gory (3(p)r* involving only the operation 1r. Similar results have been ob- 
tained for torsion F-modules by Serre [12] and for torsion E(1)*E(1)-com- 
odules by Ravenel [11]. 

We begin by constructing a category 63(p)r which can be identified 
with (3(p). Let or_Mod denote the category whose objects are Z(p)-modules 
equipped with an endomorphism denoted by 04r, and whose morphisms are 

Z(P)-homomorphisms commuting with or. Let 63(p)r be the full subcate- 
gory of or_Mod given by all M E or_Mod such that: 

(5.1). for each p-torsion element x E M, there exists u 2 0 such that 
(Opr)PuX = x, and 
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(5.2). the operator 0 1 on M 0 Q is diagonalizable with eigen- 
values all of the form r (P- ) for ] E Z (or equivalently M 0 Q = (Gj.Z 
Wj(p- 1) where Wj'(p 1) = {x E M?( QI }rx = ri(P- )x}.) 

Letting l r = {r-1 it is often convenient to replace condition (5.1) 
by: 

(5.3). For eachp-torsion elementx eM, there exists h 2 1 such that 
(r )*X = O. 

LEMMA 5.4. For an object M E Ar_Mod, (5.1) is equivalent to (5.3). 
The proof is in 5.11. In view of 5.4 a torsion object in 63(p)r is merely a 

p-torsion abelian group equipped with a locally nilpotent endomorphism 
r. Clearly (33(p)r is closed under arbitrary direct sums in {1r_Mod, and 

B(p)r is an abelian category since: 

LEMMA 5.5. If M E 63(p)r and if His a /r_Mod-subobject of M, then 
H and M/H are in 63(p)r. 

The proof is in 5.12. 
For i E Z and M E pr_Mod, let T'M e Vr_Mod equal M as a Z(p)- 

module but have 1r: TIM TIM equal to ri'pr:M -+ M. This defines a 

categorical automorphism Ti: or-Mod or-Mod. It is straightforward to 
show that Ti(P-1) restricts to a categorical automorphism Ti(P-1): 63(p)r 

63(p)r forj e Z. 

5.6. The abelian category 63(p)r. Let 63(p)r* be the abelian cate- 
gory such that an object M E (63(p)r is a collection of objects Mn E (3(p)r 
for n E Z together with isomorphisms v: TP 1Mn : Mn+2p-2 in 6B(p)r for 
all n, and a morphismf:M -+ N in 63(p)r* is a collection of morphisms 
fn :Mn -+ Nn in 63(p)r for n E Z such that vfn = fn+2p-2V for all n. For t E 

Z, there is a suspension automorphism Et: 63(p)r - 6B(p4) defined as in 

3.6. 
We now show that the categories 63(p)r and 63(p)r can respectively be 

identified with 63(p)* and 63(p). First note that there is a forgetful functor 
0: (63(p) -, 63(p)r. In particular, if x E M E 63(p) with pmx = 0, then 

C(x; t) is in 63(p)f with ptmC(x; 1l) = 0, and thus the action of Z*) on 
C(x; t) factors through Fn for some n. Since Fn is of order pn, it follows 
that (1r)P X = x. The functor s?: 63(p) -+ 6B(p)r clearly prolongs to a for- 

getful functor (p (63(p)* + (B(p). 

PROPOSITION 5.7. The forgetful functor so: 63(p)* - 6((p)4r (resp. 

(p: 63(p) -(3(p)r) is an isomorphism of categories. In more detail, the 

structure of each object in 63(p)r (resp. 63(p)r) extends uniquely to a 
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structure in (3(p)* (resp. (M(p)), and these extensions provide a functor 
which is inverse to sp. These functors respect suspensions. 

The proof is in 5.13, and we now give some preparatory lemmas. We 
say that an object M e lr_Mod has Property A if M is finitely generated 
over Z(p) and if for each integer m 2 1 there exists u 2 0 such that (r)P` 

acts as the identity on M/pmM. 

LEMMA 5.8. If M e pr_Mod has Property A and if H is a tr_Mod- 
subobject of M, then H and M/H have Property A. 

The proof is similar to that of 1.4. 

LEMMA 5.9. If M E (B(p)r is finitely generated over Z(P), then M has 
Property A. 

Proof. Let M be the p-torsion subgroup of M, and let M = M/M. 
Using the diagonalizability property of t1,r ( 1 on M O Q, one constructs a 
free Z(p)-module F generated by a set of eigenvalues in M 0 Q and such 
that M C F C M O) Q. One easily shows that F has Property A, and thus 
M also does by 5.8. Now for a given m 2 1 consider the short exact se- 
quence 

0 -O M/pmM -+ M/pmM -+ M/pmM -O 0 

and choose v 2 0 such that (Vr)Pv acts as the identity on both M/pmM and 

M/pmM. Let G be the group of all automorphisms of M/pmM which act 
as the identity on both M/pmM and M/pmM. Then G has order pV for 
some w 2 0 since it is isomorphic to the additive group of homomorphisms 
from M/pmM to M/pmM. Consequently (tr)P acts as the identity on 
M/pmM. 

For M E ,r_Mod and x E M, let C(x; {r) E pr_Mod denote the /r_Mod 

subobject of M generated by x (i.e., C(x; tr) is generated over Z(p) by the 
elements ({r)iX for all i 2 0). 

LEMMA 5. 10. If M E (33(p)r and x E M, then C(x; tr) is finitely gen- 
erated over Z(p). 

Proof. Let M be the p-torsion subgroup of M, let M = MIM, and 
let x- e M be the image of x. Using the diagonalizability property of t1,r (D 1 
on M 0 Q one shows that C(x-; {r) is finitely generated over Z(p). Thus 
there exist q 2 0 and ao, ..., aq E Z(p) such that (ry)q+1x = 

E?=0 a (lr)ix . Consequently (=r) +lx= x + S2q_0 a ({r)ix for some x E 
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M. Since the set R = {(Opr)ig I i 2 O} is finite, it follows that C(x; 0r) is 
finitely generated over Z(p) by R U S where S = { (Vr)ix 0 c i c q }. 

5.11. Proof of 5.4. First suppose (5.1) and let x E M be ap-torsion 
element with (r)PX =-x. Then C(x; or) is a finitep-group and has a finite 
filtration {Fi}i20 with Fi = piC(x; or ). Then (or - 1)pu = (Vr)P - 1 = 0 

on each of the Z/p-modules Fil/Fi+. An easy extension argument now 
shows that or - 1 acts nilpotently on C(x; or), and this implies (5.3). The 
reverse implication may be proved similarly, using an extension argument 
like that in the proof of 5.9. 

5.12. Proof of 5.5. The diagonalizability property (5.2) for M( Q 
holds also for H (O Q and (M/H) 0 Q by elementary linear algebra. Thus 
H is clearly in 63(p)r, and it remains to show the periodicity property (5.1) 
of or on an element x E M/H withpmx = 0 for some m 2 1. Choose x E M 
representing Y. Then the Or_Mod-subobject C(x; or) C M is in 63(p)r and 
is finitely generated over Z(p) by 5.10. Hence C(x; or) has Property A by 
5.9, and its image C(x; or) must also have Property A. Thus, sinceptmC(x; 

or) = 0, or has the desired periodicity property on Y. 

5.13. Proof of 5.7. We shall first impose a canonical 63(p)-struc- 
ture on an object M E 63(p)r which is finitely generated over Z(p). We use 
the arithmetic square 

Y p 

M $ Q g) 30".- 

which is a pull-back diagram in Or_Mod involving the p-adic completion 
MA = limm M/p'mM. Clearly M 0 Q has a unique {-Mod-structure such 
that kkw = k (P l)w for each k E Z*) and w E Wj(p_ ) where MO Q = 

j,EZ Wj(P-1) is the eigenspace decomposition given by (5.2). Also, for 
m 2 1, M/pmM has a unique {-Mod-structure such that 4r = (t,r)i on 
M/p mM for each i 2 0 and such that the action of Z(*p) on M/p mM factors 
through I" for some n. This follows because (or)Pn acts as the identity on 
M/pmM for some n 2 0 by 5.9 and because r generates the cyclic group Fn 

of order pn. The {-Mod-structures of M/pmM for m 2 1 determine k- 

Mod-structures of Mp and Mp 
A Q. To show that c 0 1: M (0 Q -+ Mp 

Q is in {-Mod, letM C F C M0Qbe as in the proof of 5.9. SinceFe 
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63(p)r is a free Z(p)-module on a finite set of eigenvectors of 40 1: M 0 Q 
M 0 Q, one easily proves that c 0 1 :F 0 Q -+F' (0 Q is in ?4-Mod. 

Since the vertical maps in the commutative diagram 

M0@ Q-(23 MA 0 Q 

FOQ c1 Fp OQ 

are monomorphisms in {-Mod, c & 1: M X Q -+M Q is also in i/-Mod. 
Now let 0(M) E {-Mod denote M equipped with the {-Mod structure deter- 
mined by the arithmetic square. One checks that 0(M) is in 63(p), that this 
is the unique 63(p)-structure on M extending its 63(p)r-structure, and that 
0 is functorial. Next, for an arbitrary object N E 63(p)r, we let 0(N) denote 
N equipped with the {-Mod-structure which restricts to 0C(x; 0') for each 
x E N. One checks that 0(N) is in 63(p), that this is the unique 63(p)-struc- 
ture on N extending its 63(p)r-structure, and that 0 is still functorial. Now 
5.7 follows easily. 

6. Universal objects in 63(p) and 63(p)*. Let ir*E(l)-Mod denote 
the category of graded modules over ir*E(1) = Z(p) [v, v-1 ]. We shall con- 
struct a functor Al: -r*E(1)-Mod -& 63(p)* which is right adjoint to the 
forgetful functor, and we shall obtain a canonical isomorphism E(1)* Y 
aC(x* Y) in 63(p)* for each E(1)-module spectrum Y. We begin by con- 
structing the corresponding ungraded functor Il :Z(p)-Mod -- 63(p) on the 
category of Z(p)-modules. Whenever convenient, we identify 63(p) (resp. 
63(p)*) with 63(p)r (resp. 63(p)*) using 5.7 where r is a fixed integer 
generating IF1. 

Definition 6.1. A universal 63(p)-object over a Z(p)-module G is an 
object Al(G) E( 63(p) together with a Z(P)-homomorphism e: 9(G) -+ G 
such that for eachX E 63(p) and each Z(p)- homomorphismf:X -+G there 
exists a unique mapf:X -+ 91(G) in 63(p) with ef = f. 

Such a universal 63(p)-object over G is clearly unique up to a canoni- 
cal isomorphism. We now construct it in two important cases and prove 
that it always exists. 

For ap-torsion abelian group G, let 91(G) = E?' I Gn where each Gn 
is a copy of G, and let Vr:?(G) -A 'l1(G) send (g1, g2, **.) to (g2, g3, 

... ). By 5.4 and 5.7, this determines a (3(p)-structure for 91(G) with or = 
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tr + 1. We claim that e:CU(G) -+ G is a universal 63(p)-object over G 
where e sends (g 1, g2, . . .) to g 1. For each X E 63(p) and each Z(p)-homo- 
morphismf:X G, a liftingf:X A lU(G) in 63(p) must sendx eXto (fx, 
f rx f(lr)2x, ...) and it suffices to showfWkr)hx = 0 for sufficiently 
large h. Since C(x; ) is finitely generated over Z(p), we may choose m 2 1 
such that pmfC(x; 0U) = 0. Then for sufficiently large h, (Vr)h equals 0 on 
C(x; 1r)/pmC(x; V') and thereforef(Ir)hx = O. 

For a rational (i.e., uniquely divisible) abelian group G, let G = (?jez 
Gi(P-1) where each Gi(P-1) is a copy of G, and let 5k:C1(G) -+ CU(G) be 
given by k i(P-) Gi (P-) Gi(P-1) for each j E Z and k E Z *). Then 
e:CU(G) -- G is a universal 63(p)-object over G where e is given by 
1: Gi (P-) G for each j E Z. For each X E 63(p) and each Z(p)-homo- 
morphismf:X -+ G, the unique liftingf:X -+ AU(G) in 63(p) is obtained by 
factoring f through X 0 Q and using the eigenspace decomposition of 
X (g Q. 

PROPOSITION 6.2. Over each Z(p)-module G, there exists a universal 
63(p)-object e:U(G) -- G. 

Proof. If G is divisible, then G = I?JwhereIis rational andJisp- 
torsion, and we let e: Al(G) -+ G be the direct sum of the universal 63(p)- 
objects e: (I) -+ I and e: U(J) J constructed above. In general, we 
construct a short exact sequence 0 -O G -D -? D- 0 with Do and D' 
divisible Z(p)-modules, and we let e: Ul(G) -+ G be the kernel of the in- 
duced map from e: cU(D0) -- Do to e: cU(D1) -- D1. 

We have now constructed a right adjoint cU :Z(p)-Mod -+ 63(p) to the 
forgetful functor from 63(p) to Z(p)-Mod. To show that cU is exact we need: 

LEMMA 6.3. If g :I -+ J is an epimorphism of Z(p)-modules where I 
is rational and J is p-torsion, then cU(g): cU(I) -+ cU(J) is also an 
epimorphism. 

Proof. For y E J and s E Z with s = 0 mod p, we first show that the 
element (y, Sy,s s2y, . . .) E 'l(J) is in the image of cU(g). Choose n 2 1 such 
that pny = 0, and note that rP- 1 generates the kernel of (Z/pn )* -+ (Z/ 
p)*. Now choosej eZ such that r (p- )= s + 1 modpn and choosex EI 

such that g(x) = y. Then 9L(g) sends the elementx eI (P"1) C Al(I) to (y, 
Sy, s2y , . . .) E cU(J) as desired. Next, for m 2 0 andy eJ, we may choose z 
eJwithp,nz y sinceJ is the quotient of a rational group. Taking s = pn 

we have smz = y and sm+lZ = 0. Thus the element (z, ..., sm-lz, y, O, 
... ) is in the image of 91(g): cU(I) -+ cU(J), and consequently 91(g) is onto. 
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PROPOSITION 6.4. The functor CU :Z(p)-Mod -+ 63(p) preserves ex- 
act sequences, arbitrary direct sums, and arbitrary direct limits. 

Proof. Since CU is a right adjoint, it is left exact. To show that CU is 
exact it suffices to show that its derived functor RnU : Z(p)-Mod -+ 63(p) is 
zero for n 2 1. For a torsion-free Z(p)-module F, CU preserves the exactness 
of O F F&Q -FoQIZ Oby6.3, and thus Rn(F) = Oforn 2 
1. For any Z(p)-module G, there is an exact sequence 0 -+ F1 -+ Fo -+ G -+ 

0 where each Fi is a free Z(p)-module. Since RnCU(Fi) = 0 for n 2 1, 
Rn lt(G) = 0 for n 2 1. Next, CU preserves arbitrary direct sums because it 
preserves direct sums of divisible groups and is exact. Finally, CU preserves 
arbitrary direct limits because it preserves arbitrary direct sums and is ex- 
act. 

We now construct and apply the graded version of CU. 

6.5. Thefunctor CU: -r*E(1)-Mod -+ 63(p)*. For H E -r*E(1)-Mod, 
let CU(H) E 63(p)* consist of the objects CU(Hn) E 63(p) for n E Z together 
with the unique maps v': T-(P H cU(Hn+2j(p-1)) in 63(p) forj E 
Z making the diagram 

Ti(P 1) 
ql(Hn ) 

vi 
c(Hn+2j(p-1)) 

le le 

vi 

Hn >Hn+2j(p- 1) 

commute. Then e: cU(H) -+ H has the universal property that for each X E 
63(p)* and each -r*E(1)-homomorphismf:X -+ H there exists a unique 
mapf:X -+ CU(H) in 63(p)* with ef = f. Thus the functor CU: -r*E(1)-Mod 
-+ 63(p)* is right adjoint to the forgetful functor. It also preserves exact 
sequences, arbitrary direct sums, and arbitrary direct limits. 

For an E(1)-module spectrum Y E Hos the multiplication map ,u :E(1) 
A Y -+ U induces a ir*E(1)-homomorphism m :E(1)* Y ir* Y and we let 
m :E(1)* Y -+ ?(ir* Y) be the unique map in 63(p)* with emi = m. 

PROPOSITION 6.6. For each E(1)-module spectrum Y E Hos, the 
map m :E(1)*Y ?O(-r*Y) is an isomorphism in 63(p)*. 

The proof depends on the following lemma. For M E 63(p), let MO 
and MO, respectively denote the largest subobject and quotient object of M 
with trivial {-action. Thus by 5.7, MO and MO, are respectively given by the 
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kernel and cokernel of Vr:M -+ M. Consequently a short exact sequence 
0 -O L -+ M -+ N -+ 0 in 63(p) gives rise to a six-term exact sequence 

0 -+ L -+ MO -+ -+ LO, - MO, - No, - 0. 

Note that 4l(G)O = G and cU(G)v, = 0 for a torsion Z(p)-module G. 

LEMMA 6.7. A map f:L- M in 63(p) is an isomorphism if and only 
if it induces isomorphisms L 0 Q = MO Q and LO = MO and a monomor- 

phism LO, Mo,. 

Proof. The "only if" part is obvious. For the "if" part, note that ker 
f is torsion and (kerf)O = 0. This implies kerf = 0 since Ar acts locally 
nilpotently on each torsion object of 63(p). Likewise cokf is torsion and 
(cokf)O = 0 by a six-term exact sequence argument. Thus cokf = 0 and 
f is an isomorphism. 

For an abelian group G and spectrum X E HoS, let XG E Hos denote X 
with coefficients in G, i.e., XG is the smash product of X with a Moore 
spectrum of type (G, 0). 

6.8. Proof of 6.6. First, if Y = E(l)Z/p' then Y is a K(,,)*-local 
(= E(1)*-local) torsion spectrum, and thus the sequence Y K(,) A Y 

{-K(p) A Y is a cofibering in HoS by Section 4 of [7] where, for the mo- 

ment, r denotes a positive integer generating (Z/p2 )* instead of merely F'. 

Hence the sequence Y 
' 

E( 1) A Y {-4 E( 1) A Y is also a cofibering in Ho' 

because it is a direct summand of the above sequence. Thus there is a short 
exact sequence 0 -+ ir*Y E(1)*Y 4E(1)*Y -O 0 which is split by 
m :E(1)* Y ir* Y. Consequently (E(1)* Y)O i 7r* Y and (E(1)* Y)O = 0, 
so m :E(1)* Y c U( 7r* Y) by 6.7. Next, if Y = E(1)Q then E(1)o Yhas a Q- 
basis {viw -i I j E Z } with {k (viw -i) = ki(P - 1) vjw -i for all k E Z *) andj 
eiZ, and the map m :E(1)0 Y - r0 Y Q sends vJw to 1 for all j E Z. 

Thus, comparing E(1)0 Y with our explicit description of cU(Q), we find 

m :E(1)0 Y lU(iro Y). Since E(1)n Y =0 when n is not divisible by 2p - 

2, we obtain I : E(1)* Y c lU(r* Y). Next, if Y = E(1)D where D is a 
divisible Z(p)-module, then mI :E(t)* Y = lU(r* Y) since D is a direct sum 
of copies of Z/p and Q. Thus, if Y = E(1)G for any Z(p)-module G, then 
mfi :E(1)*Y = cU(r*Y) since there is a cofibering E(1)G -+ E(1)D? -+ 

E(1)D1 of E(1)-module spectra corresponding to an injective resolution 0 
G -+ D- D2 0. Finally, if Y is any E(1)-module spectrum, then 

m :E(1)* Y ? Al(ir* Y) since Y is equivalent to the E(1)-module spectrum 
\V=,.2_0 sE(1)(;ri)- 
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7. The Ext functors in (3(p) and (3(p)*. We first obtain detailed 
results on the functors Exts in the abelian category (3(p) and then extend 
these results to the functors Exts t in (3(p)* or equivalently in (@(p)*. 

PROPOSITION 7.1. If D is a divisible Z(p)-module, then 91(D) is in- 
jective in G3(p). Thus G3(p) has enough injectives. 

Proof. 91(D) is injective by an adjointness argument. Likewise, each 
M E 6f3(p) can be embedded in an injective object by choosing a Z(/))-mono- 
morphismf:M -+ D' with D' divisible and then taking the liftingf:M M 
91(D') in (63(p). 

For later use, we now determine all the injectives in (3(p). For a Z(p)- 
module G andj E Z, let Tj(P-')G E 63(p) equal G as a Z(p)-module and 
have {k = ki(P-') for each k E Z*). 

PROPOSITION 7.2. An object M E (63(p) is injective if and only if 

M = Al(D) ?) ( ?) Tj(P-1)Rj) 
jez 

for some divisible torsion Z(p)-module D and some rational Z(p)-modules 
Rjforj E Z. 

Proof. The "if" part is easy, so let M E 6f3(p) be injective. As in proof 
7.1, construct a monomorphismf:M -+ cU(D') with D' divisible, and note 
thatf has a left inverse. Thus M is divisible and its torsion subobject is 
injective in 6f3(p) because cU(D') has these properties. Hence M = N (O R 
in 63(p) where N is an injective torsion object and R is rational. Since N is a 
retract of cU(N) in 63(p) and since c9(N)O 1 N and cU(N)1, = 0, it follows 
that NO is divisible and No,= 0. Thus by 6.7 there is an isomorphism r:N 
. cU(N) in 63(p) where r:N -+ NO is a retraction. The proposition now 

follows using the eigenspace decomposition of R = R ? Q. 

PROPOSITION 7.3. For G E Z(p)-Mod, L E (p), and s 2 0, there is 
a natural isomorphism Ext'(p)(L, c9(G)) = Ext')(L, G). 

Proof. If 0 G -D Do -+ D1 0 is an injective resolution of G in 

Z(p)-Mod, then 0 -9(G) -+ 91(D0) -9(D1) -O 0 is an injective resolu- 
tion of 91(G) in 63(p) by 6.4 and 7.1. Thus the adjunction isomorphism 

Hom3(p)(L, cU(-)) = Homz( )(L, -) induces the desired natural isomor- 
phism. 

To determine Ext' (p)(L, M) for more general L, M E 3(b(p), we need 
the natural sequence 



916 A. K. BOUSFIELD 

(7.4) 0 -+M (M) ?t(M ) V4M ? Q O 

in (3(p) where xt is adjoint to 1 :M M, where ( = -r _ q(Ar) =- ` - 

CU({/) with r a fixed integer generating F , and where -y is the composition 
of the canonical maps 

(U(M) _+ (M 0Q) = @ (M?Q)J(P-l) (W W 
M(/?-Q) = MOQ 

JEZ JEZ *(iI 

where MO Q ? jEZ Wj(p-1) is the eigenspace decomposition from (5.2) 
and where qj: (M? Q)i(P-1) -- Wj(p_1) is the projection. 

LEMMA 7.5. For each M E 6B(p) the sequence (7.4) is exact. 

Proof. If M is p-torsion or rational, then the exactness of (7.4) fol- 
lows using our explicit constructions of 91(M). In general, one easily 
checks that O3a = 0 and -yB = 0, so (7.4) is a chain complex. Using the 
short exact sequences of chain complexes induced by 0 -O M -+ M - M 
O and 0 -O M -+ M 0 Q -+ M 0 Q/Z -+ 0 where M is the torsion subobject 
of M, one deduces the exactness of (7.4) from the exactness of the corre- 
sponding complexes involving M, M (0 Q, and M 0 Q/Z. 

For any Z(p)-module G, one can apply (7.4) to deduce 'I(G)O 1 G 
and cU(G), = G ? Q by treating G as a trivial object of 63(p). However, 
our main application is: 

7.6. A spectral sequence for Ext,(p)(L, M). Let L, M E 63(p). Us- 
ing the exact sequence (7.4) and the isomorphisms 7.3, one obtains a spec- 
tral sequence {Ejk } with differentials dr :E jk Ej+r,k-r+ 'and with El - 
term given by E?0? Homz (L, M), E?'1 = Ext' (L, M), El'0 - 

Homz(p(L, M), Ell= Ext1(p)(L, M), El20 = Hom63(p)(L 0 Q, M 0 Q), 
and EJA = 0 otherwise. The differential d I: Extz (L, M) -+ Ext )(L, 
M) for k = 0, 1 is given by dif =f ? A-{ f where {r:M- M and 
14 :L -+ L denote /r , and the differential d1:Homz( )(L, M) 

Hom3(p)(L (0 Q, MO Q) carriesf:L -+ M to the map d If:L (0 Q -+ MO 
Q given by the homogeneous components off (? 1 :L (0 Q -M (M Q with 
respect to the eigenspace decompositions of L (0 Q and M 0 Q. The only 
other possible differential is d2 :E2" -- E2'0 and thus E3 = Eoo . The spec- 
tral sequence converges to { Ext' (p)(L, M) } so that there are natural exact 
sequences 

0 Es-0- Exts (p)(L, M) -- Esr' -- 0 

for all s. Since EJ,,k = O forj + k > 2, we have 
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PROPOSITION 7.7. If s > 2 then Ext'(p)(L, M) = O for all L, M E 

Now suppose that L, M E ( p) satisfy the condition Hom(p) (L Q 
MOQ) = O(i.e., -01L:L Q &L Q andVr(g1:M0Q -+M0Q 
have no common eigenvalues). Then the spectral sequence reduces to a 
natural exact sequence 

(7.8) 0 Hom63(p)(L, M) -> Homz (L, M) 4 Homz (L, M) 

Ext ()(L, M) - Ext')(L, M) 4Extz( (L, M) 

Ext63(p)(L, M) -O 0 

where p is the forgetful map, d1 is as above, and a: Homz( )(L, M) 
Ext (p)(L, M) is as follows. Forf E Homz( (L, M), the element a(f) E 

Extm(p)(L, M) is represented by the extension 0 -O M N AL -O 0 in 

63(p) such that N = M?L as aZ(p)-module, tr(x,y) = (trx +fy, try) 

for (x,y) eN, c(x) = (x, O) forx E M, and 6(x,y) = y for (x,y) eN. To 
verify this description of a(f ), consider the exact sequence 0 -O M A 9.1(M) 
-4 'l(M) -O 0 in 6B(p) where Mlt(M) = ker y. The Z(p)-module splitting 
e: 'l1(M) -- M induces a corresponding splitting d: Alt(M) Ul1(M), and it 

suffices to prove: 

LEMMA 7.9. For each M E (B(p), e4rVd = e: Alt(M) M. 

Proof. First suppose M is p-torsion. Then 'lt(M) = 'l1(M) and 
d(m1, M2, .. .) is of the form (0, m 1, . . .). Hence eVrd(ml, M2, .. .) = 

M1 = e(m1, M2, ...) so eAr d = e, and thus eArVd = e because ed = 0. 
Next suppose M is finitely generated over Z(p). Since our conclusion holds 
for each M/p'M E (B(p), the maps ez4rd, e:tll(M) -+ M become equal 
when composed with each quotient map M -- M/ppM, and thus e,rd = e 
because nfn pnM = 0. Now the general case follows a direct limit argu- 
ment. 

7. 10. The functors Exts t in (B(p)* and (i(p)*. There is an equiva- 
lence of 6B(p)* with the product of 2p - 2 copies of 6B(p) where an object 
M E (B(p)* goes to the objects MO, . . ., M2p_3 E (B(p). Thus 63(p)* has 
enough injectives and the graded extension groups in 6B(p)* have a natural 
decomposition 

2p-3 

Ext-,d(P)*(L, M) = Ext' (p)*(r2tL, M) H Ext' (p)(Li- t Mi). 
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Moreover, the categorical equivalence (-)[O: (Wp)* -- 63(p)* of 3.8 in- 
duces natural isomorphisms 

Ext@p)*(B, C) = Ext,-j3( ) (BO1 CIO.) 

for B, C E (i(p)*. Consequently, our results on the functors Exts in 63(p) 
apply to the functors Exts t in 6B(p)* and (i(p)*, and these Exts t vanish 
for s > 2. A slightly weaker version of this vanishing result was obtained by 
Adams-Baird in the equivalent category of K(p)*K(p)-comodules (see [4]). 

8. The E(1)*-Adams spectral sequence. For spectra X, Y E Hos we 
construct the E(1)*-Adams spectral sequence {E'rt(X, Y) } which has 

Es t (X, Y) = Ext(St(p)* (E( 1)*X, E( 1)* Y) 

and converges strongly to [XE(1), YE(1)]* where (-)E(1) is the E(1)*-locali- 
zation functor. We then observe that Ei t (X, Y) = 0 for s > 2 and express 
the differential d2 by a formula involving the E(1)*-k-invariants of X and Y. 
This requires a discussion of E(1)*-Moore spectra. We conclude by indi- 
cating the corresponding results for the K(p)*-Adams spectral sequence. In 
constructing Adams spectral sequences, we follow Moss [10] since he 
provides composition pairings and since the method of [5] could give the 
wrong E2-term when E(1)*X is not a free ir*E(1)-module. 

A spectrum Y E Hos is called E(1)*-injective if E(1)* Y is injective in 
63(p)* and the canonical map 

[X, Y]* -- Hom 33(p)* (E(1)*X, E(1)* Y) 

is an isomorphism for each X E Hos. Note that the E(1)*-injective spectra 
are E(1)*-local and are closed under finite wedges, retractions, and 
(de)suspensions in Hos. 

LEMMA 8.1. If YE Hos is an E( l)-module spectrum with -r* Y divisi- 
ble, or if Y is any rational spectrum, then Y is E(1)*-injective. 

Proof. First let Y be an E(1)-module spectrum with lr* Y divisible. 
Using the techniques of Section 13 of [5], one shows that the canonical 

mapj: [X, Y] -- Hom,*E(l)(E(1)*X, -r* Y) is an isomorphism for each X E 
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Hos. Since -r* Y is divisible and since E(1)* Y ( 'UOr* Y) by 6.6, E(1)* Y is 
injective in (B(p)* and an adjointness argument now shows that the canon- 
ical map [X, Y] -+ Hom,(,,) (E(1)*X, E(1)*Y) is an isomnorphism 
for each X E Hos. Thus Y is E(1)*-injective. Finally, if Y is any rational 
spectrum, then Y is E(1)*-injective because Y is a retract of the rational 
E(1)-module spectrum E(1) A Y. 

PROPOSITION 8.2. For each injective object M E 63(p)* there exists 
an E(1)*-injective spectrum Y E Hos with E(1)* Y M in (33(p)*. 

Proof. First suppose for some n E Z that Mi 0 unless i n mod 
2p- 2. By 7.2, 

Mn = cUl(D) i) i) Tj(P- 1)Rj 
jEz 

in 6B(p) for some divisible torsion Z(p)-module D and some rational Z(p)- 
modules Ri forj E Z. Thus M = E(1 )* Y for the E(1 )*-injective spectrum Y 
= E(1)D v C where C is the rational spectrum with 7riC = Rj when i = 
n - 2j(p - 1) and with 7riC = 0 when i i n mod 2p - 2. The proposition 
now follows for any injective object M E (B(p)* since M is the direct sum of 
2p- 2 objects of the above sort. 

An E(1)*-Adams tower for a spectrum Y E Hos is a sequence of tri- 
angles 

Yn+I Yn Jn E Yn+I 

in Hos for n 2 0 such that each Jn is E(1)*-injective, each E(1)*in is the 
0-map, and Yo = Y. Each Y E Hos has an E(1)*-Adams tower which may 
be constructed inductively by using 8.2 and the existence of enough injec- 
tives in (3(p)*. 

8.3. The E(1)*-Adams spectral sequence. For X, Y E HoS the 
E(1)*-Adams spectral sequence {Ert(X, Y),}r2 is obtained by taking an 
E(1)*-Adams tower for Y, then applying [X, -]* to give an exact couple, 
and then taking the associated spectral sequence with the E1-term dis- 
carded. The spectral sequence does not depend on the choice of the Adams 
tower and is natural in X and Y. As in [10] there is a natural isomorphism 
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for each s, t, and thus E2 t(X, Y) = 0 unless s = 0, 1, or 2. Consequently 
the differentials dr :Esrt(X, Y) - Es+rt+r- I (X, Y) are all trivial except 
possibly for d2:E?'t(X, Y) -E2 tE + I(X, Y). ThusEs t(X, Y) = Es' t(X, Y) 
where E`0t(X, Y) denotes nr Es t'(X, Y). For s 2 0 let FS [X, Y]* denote 
the image of the map [X, Yi]* -- [X, Y]* given by an E(1)*-Adams tower 
for Y, and note that {FS[X, Y]*,}s?o is a natural decreasing filtration of 
[X, Y]* = F? [X, Y]*. In fact, an elementf E [X, Y]* lies in FS [X, Y]* if 
and only iff is expressible as an s-fold compositef = f I ... f, where each 
E(1)*fi is 0. In general there is a natural injection 

h: (FS/FS+l) [X, Y] t -s E`oot (X, Y) 

which is induced for s = 0 by the canonical map [X, Y]* 

Hom63(p)* (EM1*X, E(1)* Y). 

PROPOSITION 8.4. For X, Y E Hos with YE(1)*-local, the spectral 
sequence {E',t(X, Y)} converges strongly to [X, Y]* in the sense that 
FS[X, Y]* =Ofors > 2and 

h:(F`/F`+ )[X, Y]t_- = E`jt(X, Y) = ES't(X, Y) 

for each s, t. 

Proof. Let {Yn+I Yn + J YnJn +}IIn > o be an E(1)*-Adams 
tower for Y. Then eachJ. is E(1)*-local since it is E(1)*-injective, and each 
Yn is E(1)*-local by induction on n (see 1.4 of [7]). Furthermore, E(1)* Y2 
is injective in 63(p)* since E(1)* Y has injective dimension < 2. Thus, by 
8.2 there exists an E(1)*-equivalenceg: Y2 -- L in Hos such thatL is E(1)*- 
injective. Now g: Y2 - L since g is an E(1)*-equivalence of E(1)*-local 
spectra. Thus Y2 is E(1)*-injective, and we may suppose that our E(1)*- 
Adams tower for Y has Y2 = J2 and Yn 0 ? = Jn for all n 2 3. With this 
tower, the proposition follows immediately. 

In general, the "actual" target of the spectral sequence is [XE(1), 

YE(1)]* = [X, YE(1)]* because of the following easy result: 

PROPOSITION 8.5. For X, Y E Hos the spectral sequence {ES '(X, 

Y)} is naturally isomorphic to {ES t(XE(M), YE(1))} and thus converges 

strongly to [XE(1), YE(1)]* in the sense of 8.4. 

8.6. Composition pairings. Theorem 2.1 of [10] applies (in dualized 
form) to the E(1)*-Adams spectral sequence and shows that, for W, X, Y E 
Hos and 2 < r ' oo, there are natural associative pairings 
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Es,'t(X, Y) (?Eu v(W, X) -- Es+u,t+v(W, Y) 

with the following properties. For r = 2, the pairing is given by the Yoneda 
pairing 

Extt(p)t(E(1)*X, E(1)* Y) 0 Ext%P)* (E(1)* W, E(1)*X) 

Ext s+)ut+v(E(1)* W, E(1)* Y). 

If a E EE't(X, Y) and b E Euv(W, X), then dr(ab) = (dra)b + 
(-1)t-sa(drb). The pairings commute with the isomorphisms Er+1 

H(Er) and Ec. f nr Er. The composition pairing [X, Y]* 0 [ W, X ] 

[W, Y]* preserves filtration (i.e., if a EFs [X, Y]* and b E Fu [W, X]* then 
ab e Fs+u [W, Y]*), and the induced pairing of filtration quotients agrees 
with the given pairing of E,m-terms. 

Before giving our formula for the differential d2 we must introduce 
the E(1)*-Moore spectra and define the E(1)*-k-invariant. By an E(1)*- 
Moore spectrum of type (M, n) for M E (B(p) and n E Z we mean an E(1)*- 
local spectrum Y E Hos together with an isomorphism E(1),, Y = M in 
6B(p) such that E(1)i Y = 0 for each i * n mod 2p - 2. 

PROPOSITION 8.7. For each M E (B(p) and n E Z there exists an 
E(1)*-Moore spectrum of type (M, n). If X and Yare E(1)*-Moore spectra 
of types (M, n) and (N, n) respectively, then E(1)": [X, Y] 

Hom,,(p)(M, N). 

Proof. Choose an injective resolution 0 -O M -I Io -- I 1I2 O_ 0 for 
M in 63(p), and then apply 8.2 to give E(1)*-injective spectra Jo, J1, J2 E 

Hos such that each Ji is in E(1)*-Moore spectrum of type (Ii, n). Let Fl E 

Hos be the homotopy fibre of a map Jo - J1 which is carried by E(1), to IO 
-- II. Next let F2 E Hos be the homotopy fibre of a map F1 E_+ -1 J2 which 
is carried by E(1),-I to an isomorphism. Then F2 is an E(1)*-Moore spec- 
trum of type (M, n). The last statement of 8.7 may be proved using the 
E(1)*-Adams spectral sequence. 

For each M E 6B(p) and n E Z, let MW(M, n) E Hos denote an E(1)*- 
Moore spectrum of type (M, n), and note that it is natural in M and unique 
up to a canonical equivalence. Also note that W(M, n) = W(Tj(P-' M, n 
+ 2j(p - 1)) for eachj E Z. More generally, for each A E f33(p)* let W(A) 

E Ho' denote the E(1)*-Iocal spectrum V,2i-3 n L(A,n n), and for each map 
p:A --B in 6f3(p)* let MW(sp): MZ(A) -X MW(B) be the induced map n 0 

M(t(Pn ) in HoS(,). Now M: 6(f(p)* - Hos is a functor and there is a natural 
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isomorphism E(1)*MW(A) = A for A E (B(p)*. By a generalized E(1)*- 
Moore spectrum we mean a spectrum equivalent to 9Th(A) for some A E 

63(p)* . 

LEMMA 8.8. If X, Y E Hos are generalized E(1)*-Moore spectra, 
then d2 = 0 in the E(1)*-Adams spectral sequence {Er(X, Y)}. 

Proof. We may suppose X = W(A) and Y = Y(B) for A, B e 

63(p)*. Then d2 = 0 since the map E(1)*: [X, Y]* Homff(I,)* (E(I)*X, 
E(1)* Y)* is onto because it has a right inverse induced by the functor M. 

8.9. The E(1)*-k-invariant. For Y e Hos we construct the E(1)*-k- 
invariant 

ky EE21 (Y, Y) = Ext2,p)(E(1)* Y, E(1)* Y) 

by first choosing a generalized E(1)*-Moore spectrum Y' E Hos with iso- 
morphism ax:E(1)*Y' = E(1)*Y and then letting ky = (d2 a)a - using 
O E E0 (Y', Y) and a - E EE ? (Y, Y'). To show that k y is well-defined, let 
Y" E Hos be another generalized E(1)*-Moore spectrum with f3:E(1)* Y" 

E(1)* Y, and take y: E(1)* Y" = E(1)* Y' such that ( = acy. Since d2y 
Owe have (d23)3 -1 = (d2 a)yjY - alJ- = (d2a)a- I as desired. The ele- 

ment k y has components 

ky(n, n + 1) E Ext2 (p)(E(M)n Y, E(1)n+I Y) 

for n E Z, and is determined by 2p - 2 successive components. If Y is a 
generalized E(1)*-Moore spectrum, then ky = 0 by 8.8. 

PROPOSITION 8.10. For X, Y E HoS the differentialdd2E:Et((X, Y) 
E2,1 (X, Y) in the E( 1)*-Adams spectral sequenzce is giveni by d2f k yj 
? (1)'+ lfkxfor eachf EE? '(X, Y). 

Proof. Let X' and Y' be generalized E(1)*-Moore spectra with iso- 
morphisms a:E(1)*X' = E(1)*X and f:E(1)*Y' = E(1)*Y. Letf' E 

E?t(X', Y') be such that Of'a- 1 = f E E?t(X, Y), where we take a E 

E2'0(X',X), Ol- 1 eE' E (X,X'), and f3eE2'0(Y', Y). Since d2f' = 0, we 
have 

d2f = d2 (Of'&') = (d2 O)f '0 -' + (-1)t(f'(d2a-1) 

= (d2O3)3 13f'e-1 + (-1)t3f'a-1a(d2J 1) 

kyf + (_1)tfa(d2aK 1) 
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and the proposition now follows because 

ao(d2l-') = d2(aalO ) - (d2aO)a-1 = d2(1)-kx = -kx. 

COROLLARY 8.11. For X, Y E Hoswith YE(1)*-local, a homomor- 
phismf E Hom3(p)*(E(1)*X, E(1)* Y), is induced by some map in [X, Y]t 
if and only if kyf = (-1)tfkx. 

Proof. This follows by combining 8.10 and 8.4. 

8.12. The corresponding results over K(p)*. Recall from 3.8 and 
4.2 that there is a categorical equivalence (-)[]:3(i(p)* -6 GB(p)* and a 
natural isomorphism E(1)*X = K*(X; Z(p))[01 for X E Hos. Thus the 
E(1)*-Adams spectral sequence {Es't(X, Y)} with Es't(X, Y) 
Exts,t(p)*(E(1)*X, E(1)* Y) for X, Y E Hos corresponds isomorphically to 
the K(p)*-Adams spectral sequence {Es't(X, Y; K(p)*)} with Es't(X, Y; 
K(p)* ) ExtsWP)* (K(P)*X, K(p)*X). Indeed, the two spectral sequences 
can be constructed identically since an E(1)*-Adams tower for Y is the 
same as a K(p)*-Adams tower for Y. The correspondence of E2-terms is 
given algebraically by the natural isomorphisms 

Ext"c3 
/)* (K(l))*Xg K(P)* 

Y) = ExtSs' 
p(E(1)*Xg 

E( 1)* Y) 

of 7.11, 4.2. Moreover, these correspondences respect compositions and 
Yoneda products. Finally, for W E Hos, there is a K(/,)*-k-invariant 

kW EE"'(W, W;K(1,)*) Ext(2d(1) 
(K(I,)* 

W"K(,)* 1) 

corresponding to the E(1)*-k-invariant and such that d2f = kyf + 
(1)'+1fkx for f E E?'(X, Y; K(,,)*). Thus when Y is E(1)*-local 
( K(,,)*-local), a homomorphismf E Homci(/) (K(l))*X, K(I,)* Y), is in- 
duced by some map in [X, Y], if and only if kyf = (- 1)fkx. 

9. An algebraic classification of E(1)*-local spectra. Let Hos(1) de- 
note the homotopy category of E(1)*-local (= K(p)*-local) spectra, and 
recall that HoE(1) is equivalent to the category of fractions obtained from 
Hos by giving formal inverses to the E(1)*-equivalences (= K(p)*-equiva- 
lences). Using E(1)*-k-invariants, we now algebraically determine all the 
homotopy types in Hos(1) and determine the bigraded category obtained 
from HoE(1) by taking Adams filtration quotients. We also determine 
which homotopy types in HoE(1) may be obtained as E(1)*-localizations of 
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finite CW-spectra. We conclude by indicating the corresponding results 
over K(p)* 

Let k(B(p)* denote the additive category such that an object of 
kfB(p)* is a pair (M, K) with M E 33(p)* and K E Ext2,1) (M, M) and a 
morphism from (M, K) to (N, X) in k(B(p)* is a map f:M -- N in (3(p)* 
with Xf = fK in Ext2(,) (M, N). By 8.11 there is a full additive functor 
kE(1):HoE(l) kfB(p)* sending each Y E Ho'(,) to (E(1)*Y, ky) where 
k y is the E(1)*-k-invariant of Y. 

THEOREM 9.1. For each (M, K) E kfB(p)* there exists Y E HosE(O) 
with (E( 1)* Y, k y) = (M, K) in kB(p)*. Thus the homotopy types ill Ho'E(I) 
correspond to the isomorphism classes in k(B(p)*. 

Proof. The last statement follows from the first since any isomor- 
phism kE(1)*X = kE(1)* Y in k(B(p)* must be induced by an E(1)*-equiv- 
alence X --Y in Ho SE(1) which is automatically a homotopy equivalence. To 
prove the first, let 9Th: 63(p)* - HoS be as in Section 8. Given (M, K) e 

k6(f(p)* form a short exact sequence 0 -O M -- I -- N -O 0 in 63(p)* with I 
injective, and letf: 9MZ(I) -- T(N) be a map (to be specified later) in HoS E(I) 
such thatf* = 0: E(1)* T(I) -) E(1)* 9T(N). Let Yf. E Ho SE(1) be the homot- 
opy theoretic fibre off + Z(f): 9Z(I) -S Z(N) and note that it fits in a 
triangle 

(9.2) E 1<(N) + < M(I) - (N). 

Identifying E(1)* 1'. with M in the obvious way, it will suffice to selectJ so 
that k y. = K in Ext 630,) (M, M). Form a short exact sequence 0 -O N - I' 

I" -O 0 in f3l(p)* with I' and I" injective. Now construct an E(l)*-Ad- 
ams tower for Y1 such that tht; triangle Y,, +l Y, , -J, E Y,, + I is given 
by (9.2)forn 0, by 

~~~~~~~~~E-2xImy -<N)'El(')-S1") 

for n 1, byG - 02(I") -2X(IH) Oforn 2, andbyO 0 
O O for n ? 3. This tower realizes the injective resolution 0 -O M I 
I' I" 0 of M in 63(p)*. Let Y' denote SE(M) E Hos. The E(1)*-k- 
invariant of Yj in Ext',',,)*(M, M) corresponds to an image element of 
M(al) E [Y', Jo]o in Hom6(,,)(M, I"), under the composite relation 

[Y ,JO]O [Y, Yl]l +- [Y', Y2]-1 [Y',J2]-1 = Hom(/,)*(M,I'),. 
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Going in the reverse direction, choose 0 E Hom (,)(M, I") l corresponding 
to the given K E Ext 60,,)*(M, M) and let 0 E [Y', Y, ]_ denote the image 
element of 0. It will suffice to selectf E F' [JO, Y, I -_ so that the composite 
of M(o1)E[Y',Jo]owithf+9+t(f)E[Jo, Y,]-equals0e[Y', Y,]L. 
Note that Z(f)MZ(ax) = Z(oa) = 0 and that 0 is in Fl [Y', Y, - -' because 

E(1)*i1:E(1)*Y2 - E(1)* Y1 is zero. Thus it will suffice to select an f 
which is carried to 0 by M(O)*: F [Jo, YV ] - I F [ Y', YL ] - 1. This can be 
done since E(1)* Y, has injective dimension < 1, and thus M(O)* corres- 
ponds to the epimorphism 

Ext B( 
)*(E(l)*J0, 

E(1)* Y, ) Ext1,,) (E(1)* Y', E(I)* Y,) 

induced by the monomorphism M(a)*: E(1)* Y' -- E(1)*Jo. 

9.3. The bigraded categories GrHos(1) and k(B(p)**. For X, Y E 

HoE(1) let {FS [X, Y]* }s20 be the E(1)*-Adams filtration and recall that 
FS [X, Y]* = 0 for s 2 3. Let GrHos(l) be the associated bigraded additive 
category whose objects are those of HoE(1) and whose morphism groups [X, 

Y]s,t are given by (FS /FS+ 1 ) [X, Y]t _s. For (L, X), (M, It) E k(B(p)* andq E 

Z, define d2:Homf(p)*(L, M)q -- Extm(2,*+'(L, M) by d2f = Hf + 

(-1)qtfXJA. Let k(B(p)** be the bigraded additive category whose objects 
are those of k(B(p)* and whose morphism groups [(L, X), (M, /t)ls,t are 
given by the kernel of d2: Hom,(p)* (L, M)t - Ext,( 2,t+1 (L, M) for s = 0, 
by Ext l(p)* (L, M) for s = 1, by the cokernel of d2: HomB(p)* (L, M)t - I 
Ext2(tp)*(L, M) for s = 2, and by zero for s > 2. The composition in 
k(B(p)** is induced by the Yoneda product in the obvious way. Theorem 
9.1 and the results of Section 8 easily imply 

THEOREM 9.4. There is an additive equivalence kE(1)**: GrHoE(1) 

k(B(p)** sending each X E GrHo (1) to (E(1)*X, kx) E k(B(p)**. 

Remark. In general, for X, Y E Hos(1) the group [X, Y]n need not 
split into ?o2=o [X, Y For instance, let Y be a spectrum such that 

E(1)n Y =Zip for n 0, 1 mod 2p - 2, E(1)Y =O otherwise, and ky 
0. We can show that [SE(1), Y]O Z i0 Y Z/p2 while [SE(1), Y]S S Z/p 
for s = 0, 1. Of course, this difficulty disappears in 

9.5. The homotopy category of generalized E(1)*-Moore spectra. 
Since a generalized E(1)*-Moore spectrum 91t(M) E HoE(1) is constructed 
as a wedge Vn,3 91n(M , n), one easily obtains canonical isomorphisms 
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2 

[X(M), S(N)J,, ? () Ext'S%+//(M, N) 

for M, N E 63(p)* such that compositions of homotopy classes correspond 
to Yoneda products. Thus the homotopy category of generalized E(1)*- 
Moore spectra is equivalent to the algebraic category having the same ob- 
jects as 63(p)* and having morphism groups given by the above sums of 
Ext's with compositions given by Yoneda products. We remark that an 
E(1)*-local spectrum Y is automatically a generalized E(1)*-Moore spec- 
trum if the groups Ext (2)(E(1) Y, E(l)n+1 Y) vanish for all n because this 
implies k y = 0. This happens, for instance, when the groups E(1)* Y van- 
ish in all even (or odd) dimensions, or when they all have injective dimen- 
sions ?1 in 63(p). Furthermore, for an E(1)*-local spectrum Y whose 
groups E(1)* Y are all free Z/pn-modules for some fixed n, we can shows 
that Y is a generalized E(1)*-Moore spectrum if and only if pn = o y -+ 

Y. Thus, for instance, XZ/p is a generalized E(1)*-Moore spectrum for 
each E(1)*-local spectrum X. We hope to discuss these and other splittings 
in a future note. 

We next analyze the full subcategory HjE(1) of HoE(1) given by all 
E(1)*-localizations of finite CW-spectra. The following lemma easily im- 
plies that HoSE(1) is equivalent to the category offractions obtained from 
Ho) by giving formal inverses to its E(l)*-equivalences, where HE:s is the 
homotopy category offinite CW-spectra. 

LEMMA 9.6. For each B E iHo there exists a sequence B = BO -k B 1 

B2 * * of E(1)*-equivalences in HEj: whose homotopy direct limit is 

the E(1)*-localization BE(1). Thus for each W E , colimn [W, Bn I* 

[W, BE(1)]*. 

Proof. By 2.11 and 4.8 of [7], a spectrum X is E(1)*-local if and only 
if [MZ/q, X]* = 0 for each prime q * p and [ V(1), X]* = 0, where MZ/q 
is the Moore spectrum So U q el and where V(1) is the cofibre of Adams' 
K*-equivalence 2p-2MZ/p -+ MZ/p. Let {Ln }n>0 be an indexing of the 
countable collection of spectra given by all E2 MZ/q and E2 V(1) for i E Z 

and primes q ? p. Let BO = B and suppose inductively that the finite CW- 
spectrum Bn is given. Let Fn denote the E(1)*-acyclic finite CW-spectrum 
V7 0 Vf Li,f wheref ranges over the finite set [Li, Bn ] and where Li,f is a 
copy of Li. Then construct Bn -+ Bn,+I as the homotopy cofibre of a map 
Fn -+ Bn acting byf on each Lij. The homotopy direct limit of the result- 
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ing sequence B = Bo -- B1 -- B2 * . .. is E(1)*-local by the above crite- 
rion, and the lemma follows easily. 

THEOREM 9.7. If Y E Ho'(1) is an E(1)*-local spectrum with each 
E(1)" Yfinitely generated over Z(p), then Y - WE(1)for some finite CW- 
spectrum W. 

This implies that an object (M, K) of k(B(p)* corresponds to an object 
of HoJE(I) if and only if each M,, is finitely generated over Z(1,). We prove it 
in 9.10 using two lemmas: 

LEMMA 9.8. If X A Y -+ Z -wEX is a triangle in HoE(1) and if two of 
the three spectra X, Y, Z are in HgoE(I), then so is the third. 

Proof. We may suppose that there are E(1)*-localizations q :A -+ X 
and qj :B -+ Y with A, B E Hgo. Then by 9.6 there exists a commutative 
diagram 

A -A Bn 

Xuy 

in Hos such that Bn E Ho) and v is an E(1)*-localization. Thus Z is in 

gofE(1) because it is the E(1)*-localization of the homotopy theoretic cofi- 
bre of a. 

LEMMA 9.9. For any M, N E (B(p) with M finite and any e E 

Ext,2(p)(M, N), there exists an epimorphism 6:L -+ M in (B(p) with L 

finite and such that 0*(e) = 0 in Ext 2(p)(L, N). 

Proof. Letting I = (N? Q) ? 911(D) where D is a divisible torsion 

Z(p)-module containing the torsion submodule of N, construct an injective 
resolution 0 -+ N -I 1 ? IP + 12 -+ 0 of N in 6B(p) with IP and j2 both 
torsion. Then choose E:M I 12 representing e and form the pull-back 
square 

6 
P M 

ifP 

II J2 
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in 63(p). Note that P is a torsion object and 6 :P -- M is onto. Thus, since 
M is finite, there is a finite subobject L C P with 6(L) = M. Now 0 :L -+ M 
has the desired properties. 

9.10. Proof of 9.7. The total rational dimension of Q X ir* Y is fi- 
nite. Thus there is a triangle V -+ Y -+ W -+ EV in Ho'(1) such that V is a 
finite wedge of E(1)*-localized sphere spectra and W is a torsion spectrum 
with each E(l)" W finite. By 9.8, it suffices to show that W is in fgfE(1). 

Using 9.9, choose an epimorphism 6 :L -+ E(1)2p-2 Win 63(p) withL finite 
and such that 6*kw(2p - 2, 2p - 1) = 0 in Ext2 (p)(L, E(1)2p_1 W). Then 
choose a map M(L, 2p -2) -+W carried to 0 by E(1)21,2, and let W2/1,l 
E Ho' denote its homotopy cofibre. Proceeding downward, given W,, E Hos 
with E(1)i W,, = 0 for n < i c 2p - 2, choose a map 9(E(1),, W,,, ni) 

W,1 carried to the identity by E(1),,, and let W,,-1 denote its homotopy 
cofibre. We obtain an "E(1)*-Postnikov tower" of spectra W2/,, ... 

WI, W0 with W0 = 0. By 9.8 it now suffices to show that 9(N, ni) is in 

fofE(1) for each finite N E 63(p) and n E Z. This follows when N has trivial 
+-action because S(N, n) is then the E(1)*-localization of the correspond- 
ing ordinary Moore spectrum. It follows in general, using 9.8 and Section 
5, by noting that N has a finite filtration (e.g., given by kernels of ( Nr)i:N 

N for i > 0) such that the filtration quotients have trivial {-action. 

9.11. The corresponding results over K(p,)*. Let k((p)* denote the 
additive category such that an object of k(G(p)* is a pair (M, K) with M E 

(i(p)* and K E Ext 2,1 1) (M, M), and a morphism from (M, K) to (N, X) in 
k(G(p)* is a mapf :M -+ N in (i(p)* with Xf = fK in Ext 2,i(/) (M, N). By 
8.12 there is a full additive functor kK(I,)* : HoE( s k(G(p)* sending each 
YE HOE(1) to (K(I,)* Y, ky) where ky is the K(/,)*-k-invariant of Y. Theo- 
rem 9.1 implies that kK(I,)* induces a correspondence between the homot- 
opy types in HoE(1) and the isomorphism classes in k(G(p)*. Theorem 9.4 
implies that kK(I,)* induces an equivalence between the bigraded catego- 
ries GrHos(l) and k(G(p)**. Finally, Theorem 9.7 implies than an object 
(M, K) E k(a(p)* corresponds to the E(1)*-localization ( K(/,)*-localiza- 
tion) of a finite CW-spectrum if and only if each M,, is finitely generated 
over Z(p). 

10. An interpretation of (3(p)* and (ip)* as categories of com- 
odules. Having previously shown that 63(p)* is equivalent to (i(p)*, we 
now show that 63(p)* and (i(p)* are equivalent to the categories of 
E(1)*E(1)-comodules and K(p)*K(p)-comodules. Thus our main results 
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may be reformulated using these comodule categories. We refer the reader 
to [2], [5], or [13] for an introduction to the relevant theory of coalgebras 
and comodules. 

We begin with preliminaries leading to the equivalence of 63(p)* with 
the category of E(1)*E(1)-comodules. Recall that an object M E (B(p)* 
automatically has a left module structure over -u*E(1) = Z(p) [v, v 1 ]. By a 
-r*E(1)-bimodule in (B(p)* we mean an object M E (B(p)* with a right 
-r*E(1)-module structure such that (xm)y = x(my) and bk(my) = (bkm)y 

for each x, y E 7r*E(1), m E M, and k E Z*). 

LEMMA 10.1. If B is a -r*E(1)-bimodule in (B(p)* and G is a left 
-r*E(1)-module, then B (0,*E(1)G is in (B(p)*. 

Proof. For x E -x*E(1), b eB, g E G, and k EZ*), we let x(b ?g) = 

xb ?g and bk(b ?g) = pk b 0g. Now form a short exact sequence 0 -O F' 
-- F -- G -O 0 of left -u*E(1)-modules with F' and F free, and note that B 

(,*E(I)F' and B ?,*E(1)F are in 63(p)*. Thus the cokernel B 0,*E(lnG is 
also in 63(p)*. 

By 4.2, E(1)*E(1) is a -r*E(1)-bimodule in 63(p)*, and we let 
c :E(1)*E(1) -+ -r*E(1) be the map induced by the multiplication It:E(1) A 
E(1) -+ E(1). For a left -r*E(1)-module G, consider the diagram 

E(1)*E(l) (D1r*E(l) G Uq ,G) 

G 

where c is given by c(x 0 g) = c(x)g for x E E(1)*E(1) and g E G. By 6.5 
there is a unique map e in 63(p)* making the diagram commute. 

LEMMA 10.2. The map e :E(1)*E(1) ?,*E(1) G -+ 91(G) is an isomor- 
phism for each G. Moreover,for M E 6Ml p)* each left -r*E(1)-module map 
f :M - G has a unique lifting f :M -E E(1)*E(l) ?,*E(1)G in (B(p)* with 
f = cf 

Proof. If G is a free left -u*E(1)-module on one generator, then e is 
an isomorphism by 6.6. The general isomorphism now follows since Al pre- 
serves direct sums and is exact. The last statement follows from the univer- 
sal property of 91. 

10.3. The equivalence of (B(p)* with the category of E(1)*E(l)-com- 
odules. For M E 6B(p)* let A:M -+ E(1)*E(1) (g,*E(I)M be the unique 
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map, given by 10.2, in 63(p)* such that EA = 1 :M -+ M. This gives M the 
structure of an E(l)*E(1)-comodule by an easy formal argument using 
10.2. For an E(1)*E(1)-comodule N with comultiplication A:N 
E(l)*E(1) &?,*E(1)N, the bar resolution gives an exact sequence 

0 -- N El E(1)*E(l) ?7rE(I)N 

AO?1-10zA 
' E(1)*E(l)(g),*E(1)E(l)*E(1) 07r*E(I)N. 

Since A 0 1 - 1 0 A is clearly in 6(Np)*, its kernel N has a canonical 
structure in (3(p)*. The foregoing constructions are inverse to each other 
and provide additive equivalences between 63(p)* and the category 
E(1)*E(1)-comodules. A similar equivalence involving torsion E(1)*E(1)- 
comodules was obtained by Ravenel [11] using very different methods. For 
X E Hos the structure of E(1)*X in 63(p)* corresponds via the above con- 
structions to its standard structure as an E(1)*E(1)-comodule. Thus 
63(p)* may be replaced by the category of E(1)*E(1)-comodules in our 
main results. 

To show the equivalence of (i(p)* with the category of K(p)*K(p)-com- 
odules, we recall that an object M E (i(p)* automatically has a left module 
structure over 7r*K(p) = Z(p) [U, u - l] . By a ir*K(p)-bimodule in (i(p)* we 
mean an object M E (G(p)* with a right 7r*K(p)-module structure such that 
(xm)y = x(my) and Vkk(my) = (bkm)y for each x, y E ir*K(p), m e M, and 
k E Z*). If A is a ir*K(p)-bimodule in (i(p)* and G is a left 7r*K(p)-mod- 
ule, then A ?,*K(p)G is in (i(p)* by the argument of 10.1. By 2.2, 

K(p)*K(p) is a 7r*K(p)-bimodule in (i(p)*, and we let ca:K(p)eK(p) , 

r*K(p) be the map induced by the multiplication t: K(p) A K(p) -K(p) 
For a left 7r*K(p)-module G let e :K(p)*K(p) (9*K( )G 

- G be given by c(x 
? g) = E(x)g for x E K(p)*K(p) and g E G. 

LEMMA 10.4. For a left 7r*K(p)-module G andfor M E d(p)*, each 
left 1r*K(p)-module map f :M -+ G has a unique liftingf :M -K(p*K(p 

?sr*K(p)G in C( p)* with f = Cf. 

Proof. By the equivalence of (i(p)* and Gf3(p)* in 3.8, it suffices to 
show that each left ir*E(1)-module mapf:M101 -- G has a unique lifting 
f :M[?] - E(1)*K(p) &,*K(, G in (5l(p)* withf = Ef. For this it suffices to 
show that -e:E(1)*K(p) ?,*K( )G 

-+ lI(G) is an isomorphism in (53(p)* for 
each 7r*K(p)-module G. If G is a free 7r*K(p)-module on one generator, 
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then T is an isomorphism by 6.6. The general case follows since AU preserves 
direct limits and is exact. 

10.5 The equivalence of (G(p)* with the category of K(p)*K(p)-com- 
odules. In view of 10.4, the constructions in 10.3 apply to show that each 
M E (G(p)* has a canonical K(p)*K(p)-commodule structure and that each 

K(p)*K(p)-commodule N has a canonical structure in (i(p)*. The construc- 
tions are inverse to each other and provide additive equivalences between 

(i(p)* and the category of K(p)*K(1,)-comodules. For X e Hos the structure 
of K(p)*X in (i(p)* corresponds via the above constructions to its structure 
as a K(p)*K(p)-comodule. Thus (i(p)* may be replaced by the category of 

K(p)*K(p)-comodules in our main results over K(p)* (see 7.10, 8.12, 9.11). 

10.6. The equivalence of the category of E(l)*E(l)-comodules with 
that of K(p)*K(p)-comodules. In 3.8 we established an additive equiva- 
lence from 63(p)* to d(p)* sending M E 63(p)* to -x*K(p) &,*E(1)M E 

d(p)*. This corresponds via 10.3 and 10.5 to a (presumably well-known) 
additive equivalence from the category of E(1)*E(1)-comodules to that of 

K(p)*K(p)-comodules, sending an E(1)*E(1)-comodule N to the K(p)*K(p)- 
comodule 7r*K(p) (3?*E(1)N with comodule structure induced via the iso- 
morphism 

K(pU*K(p) ILO 7r*K(p) (CIAr*E(G)E(1)*E(1)Or*E(1) * K(p) 
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