Thm (HHR) If M is a smooth framed manifold with Kervaire invariant 1, then $\dim M$ is $2, 6, 14, 30, 62, 126$.

This solves a long standing problem.

1930s: Understood degree of $\mathbb{R}^n \to S^n$ homology + cohomology.

Pontryagin studied maps $S^m \to S^n$ inverse image of regular value is a framed M^k. Preimage of closed
path in a cobordism between two such manifolds.

Thus we get

cobordism classes of stably framed \mathbb{R}-manifolds

\[
\Psi_n(\mathbb{R}) \cong S^n \quad \text{for } n \gg 0
\]

Pontrjagin used this to study $\Psi_n(\mathbb{R})$ for small n.

\[
\Psi_n S^n = 2 \quad \text{(degree of a map)}
\]

\[
\Psi_{n+1} S^n = 2/2 \quad \text{(two framings of } S^1 \text{)}
\]

\[
\Psi_{n+2} S^0 = 0 \quad \text{by mistake}
\]

studied framed surfaces and
framed surgery. There is an obstruction having to do with framings on closed curves leading to \(\eta: H^4(M) \to \mathbb{Z}/2 \)

\(\eta \) is not linear. \(\eta(x+y)-\eta(x)-\eta(y) = \langle xy \rangle \)

\(\text{Arf}(\eta) \in \mathbb{Z}/2 \) and \(\text{Th}_{n+2}(S^n) = \mathbb{Z}/2 \)

\(M \to \text{Arf}(\eta) \)

Q: When is every framed manifold cobordant to a "sphere"? i.e., a topological sphere.

A: Always except in the dimensions of the theorem.
Late 1950s + early 60's work of Kervaire–Milnor showed that is vanishes for \(k = 0 \).

Kervaire's hand cuffs

\[\nabla^0 = \mathcal{X}_g. \quad \text{hence to } S \]

\[m^0 = \nabla^0 \cup CX_g \]

This \(M \) has no smooth structure.
Could replace k by $2k+1$ giving $N^{4k+2}
\text{homeo to } S^{4k+1}$
M^{4k+2} PL manifold

Q is X_{4k+1} diffeo to S^{4k+1}?

Q is M smoothable?

Answer: Almost never.
KM could not answer these equivalent questions.
Q: In which dimension does there exist a smooth, stably framed, nilpotent Kervaire invariant 1? This is answered by our theorem.

Broadley 1969. $\Phi(M) = 5$ exists with $\Phi(M) = 5$

$\Rightarrow \exists \theta \in \pi_*^G$ represented by h_j in

the Adams spectral sequence

$k = 2^i - 2$. dim M must have this form.

Barratt, Jones, Mahowald + Tangora showed $\exists \theta_j$ for $j \leq 5$ by 1984

θ_1, θ_2 and θ_3 were known before.
Many believed that all g_i exist. Now that we know there are only 3 or 6 of them, we look for constructions related to exceptional Lie groups

EHP sequence

$$
\pi_k S^1 \to \pi_{k+1} S^1 \to \pi_{k+1} S^{2m+1} \to \pi_{k+1} S^m
$$

This leads to an inductive process starting with $\pi_4 S^1$.

Suppose $k = 2n$. So $\pi_{k+1} S^{2m+1} = \mathbb{Z}$. Generate maps to $\mathbb{Z}_{2m+1} S^n$, the Whitehead square
Q1. For which g is $[L_m, L_n]$ in image of E^0?

Q2. Is $[L_m, L_n]$ divisible by 2?

Q1. $[L_m, L_n]$ in image $E^0 \rightarrow S^m$ has j linearly independent vector fields [JAMS].

Solved by Adams 1962.

Q2. For even n this is the Hopf invariant one problem, which was also solved by Adams. For n odd it is the Kervaire invariant question.
The proof. We introduce a colimn theory S_I with

1. Detachment Theorem S_I if F, it has a nontrivial image in $T_x S_I$.
2. Periodicity Theorem $S_{k+256} = S_k$.
3. Map Theorem $S_{-k} = 0$ for $-1 < k < 0$.
Informal discussion

Want to prove reducibility claim

Theorem (Conclusion) Let M^n be a "real" manifold with $M^2 \cong N^n$. If N^n is an unoriented boundary then M^n cobordant to a free C^∞-manifold.

For each an M^{2n} we have a double cover

$$M^{2n} \rightarrow M^{2n}/C_2.$$ Then $S_{\overline{M}}$.
Example \(\mathbb{P}^1 \) fixed at \(\mathbb{RP}^1 \)

\[x^2 + y^2 = z^2 \] quadratic for \(z \in \mathbb{C} \)

For \(z = 1 \) it is real and \(\tilde{\mathbb{C}} \). For \(z = -1 \), there are no real points, so the \(\mathbb{C} \)-action is free. The orbit space is \(\mathbb{RP}^2 \), where \(m^2 \neq 0 \).

\[T_x \mathbb{C}^2 = M_{\mathbb{R}} \mathbb{C}^2 \]

\[T_x \mathbb{C}^2 \mathbb{H}^2 = \frac{2}{\sqrt{2}} [a] \quad |a| = |b| = 2 \]

(not obviously arising)

\[T_x \mathbb{C}^2 \mathbb{H}^2 = \frac{2}{\sqrt{2}} [b] \]
The map above is related to characteristic numbers w_j^{2n} as in the example above for $n = 1$.

The C_4 and

$\text{MU}^{(2)} = \text{MU}_1 \times \text{MU}_0 \quad \text{has } C_4 \text{-action}$

$\pi_4 \text{MU}^{(2)} = \mathbb{Z} \left[x_1, y x_1, x_2, y x_2, \ldots \right]$

$\text{MU}^{(2)}/(x_1, y x_1, \ldots) \cong HZ$

as before this can be reduced to geometric fixed points
\[M \xrightarrow{\nu} BU \times BU \xrightarrow{C_4 \text{- map}} \]

\[(N, W) \rightarrow (W, \bar{V}) \]

\(V \oplus \mathbb{R} \times V \) is stable normal bundle

\(M \) has \(C_4 \) action restricting to a real structure over \(C_2 \), with involution \(J \).

Example Let \(X \) be a real manifold. If it is a complex bundle \(V \) which is its stable normal bundle \((\ast \times X, p^* V) \) is a \(C_4 \)-mfld as above.
Thus given a C_4-model M, M^{C_2} is unoriented. If $M^{C_4} = \emptyset$ then M is unoriented to $M^{'\prime}$ with $(M^{'\prime})^{C_4} = \emptyset$.

This is related to $(E_{C_2} \to S^0 \to \widetilde{E_{C_2}}) \wedge MU^{C_2}$.

Assume $M^{C_4} = \emptyset$. M^{C_2} has a free action of $C_2' = C_4/C_2$. We can work as before and use

$$\int_{M^{C_2}/C_2'} \dim$$
Example \((\mathbb{CP}^1 \times \mathbb{CP}^1)^\mathbb{Z}_2 = \{(a, a) : (a, a) \sim (b, a)\}\rangle = \mathbb{RP}^1\)

Let \(\mathbb{CP}^1\) be defined by \(x^2 + y^2 = z^2\) (different complex structure)

A real cobordism is a map \(N \to \mathbb{R}\) transverse at 0 and 1
A complex \(N \to \mathbb{C}\)

\(\text{equiv. for } \mathbb{C}_2\)-actions on \(N\) and \(\mathbb{C}\)

E.g., \(\{(x, y, z) \in \mathbb{CP}^2 : x^2 + y^2 - z^2 = 0\}\) is complex cobordant to \(\{(x, y, z) \in \mathbb{CP}^2 : x^2 + y^2 + z^2 = 0\}\)