On the Non-Existence of Kervaire Invariant One Manifolds

M. Hill1, M. Hopkins2, D. Ravenel3

1University of Virginia
2Harvard University
3University of Rochester

Isle of Skye, June 2009
Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.
Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, *and maybe* 126.

Exemplars:
Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

2. $S^1 \times S^1$
Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

- $S^1 \times S^1$
- $SU(2) \times SU(2)$
Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

- $S^1 \times S^1$
- $SU(2) \times SU(2)$
- $S(O) \times S(O)$
Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

- $S^1 \times S^1$
- $SU(2) \times SU(2)$
- $S(\mathbb{O}) \times S(\mathbb{O})$
- (Bökstedt) Related to $E_6/(U(1) \times \text{Spin}(10))$
- Possibly a similar construction.
1930s Pontryagin proves
\[\{ \text{framed } n - \text{ manifolds} \} / \text{cobordism} \cong \pi_n^S. \]
1930s Pontryagin proves
\[
\frac{\text{framed } n \text{ – manifolds}}{\text{cobordism}} \cong \pi_n^S.
\]
Tries to use surgery to reduce to spheres & misses an obstruction.
1930s Pontryagin proves
\{\text{framed} n \text{ - manifolds}\}/\text{cobordism} \cong \pi^n_S.
Tries to use surgery to reduce to spheres & misses an obstruction.

1950s Kervaire-Milnor show can always reduce to case of spheres
1930s Pontryagin proves \(\{ \text{framed} n - \text{manifolds} \} / \text{cobordism} \cong \pi_n^S \).
Tries to use surgery to reduce to spheres & misses an obstruction.

1950s Kervaire-Milnor show can always reduce to case of spheres
Except possibly in dimension \(4k + 2 \), where there is an obstruction: Kervaire Invariant.
Adams Spectral Sequence

\[[X, Y] \]
Adams Spectral Sequence

\[\left[X, Y \right] \longrightarrow \text{Hom}_A(H^*(Y), H^*(X)) \]
Adams Spectral Sequence

\[[X, Y] \xrightarrow{\sim} \text{Hom}_A(H^*(Y), H^*(X)) \]

Have a SS with

\[E_2 = \text{Ext}_A(H^*(Y), H^*(X)) \]

and converging to \([X, Y]\).
Adams Spectral Sequence

\[[X, Y] \sim \text{Hom}_A(H^*(Y), H^*(X)) \]

Have a SS with

\[E_2 = \text{Ext}_A(H^*(Y), H^*(X)) \]

and converging to \([X, Y]\).

(Adem) \(\text{Ext}^1(F_2, F_2)\) is generated by classes \(h_i, i \geq 0\).
Adams Spectral Sequence

\[[X, Y] \sim \rightarrow \text{Hom}_A(H^*(Y), H^*(X)) \]

Have a SS with

\[E_2 = \text{Ext}_A(H^*(Y), H^*(X)) \]

and converging to \([X, Y]\).

- (Adem) \(\text{Ext}^1(F_2, F_2) \) is generated by classes \(h_i, i \geq 0 \).
- \(h_j \) survives the Adams SS if \(\mathbb{R}^{2j} \) admits a division algebra structure.
Browder’s Reformulation

Theorem (Browder 1969)

There are no smooth Kervaire invariant one manifolds in dimensions not of the form $2^{j+1} - 2$.
Browder’s Reformulation

Theorem (Browder 1969)

1. There are no smooth Kervaire invariant one manifolds in dimensions not of the form $2^{j+1} - 2$.
2. There is such a manifold in dimension $2^{j+1} - 2$ iff h_j^2 survives the Adams spectral sequence.
Browder's Reformulation

Theorem (Browder 1969)

1. There are no smooth Kervaire invariant one manifolds in dimensions not of the form $2^{j+1} - 2$.
2. There is such a manifold in dimension $2^{j+1} - 2$ iff h_j^2 survives the Adams spectral sequence.

Adams showed that h_j itself survives only if $j < 4$
Theorem (Browder 1969)

1. There are no smooth Kervaire invariant one manifolds in dimensions not of the form $2^{j+1} - 2$.

2. There is such a manifold in dimension $2^{j+1} - 2$ iff h_j^2 survives the Adams spectral sequence.

Adams showed that h_j itself survives only if $j < 4$

$$d_2(h_{j+1}) = h_0 h_j^2.$$
h_1^2, h_2^2, and h_3^2 classically exist.
h_1^2, h_2^2, and h_3^2 classically exist.

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.
h_1^2, h_2^2, and h_3^2 classically exist.

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.

Theorem (Barratt-Jones-Mahowald)

The class h_5^2 survives the Adams SS.
Previous Progress

h_1^2, h_2^2, and h_3^2 classically exist.

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.

Theorem (Barratt-Jones-Mahowald)

The class h_5^2 survives the Adams SS.

Theorem (H.-Hopkins-Ravenel)

For $j \geq 7$, h_j^2 does not survive the Adams SS.
There are four main steps
There are four main steps

1. Reduce to a simpler case which faithfully sees the Kervaire classes
There are four main steps

1. Reduce to a simpler case which faithfully sees the Kervaire classes
2. Rigidify the problem to get more structure and less wiggle-room
There are four main steps

1. Reduce to a simpler case which faithfully sees the Kervaire classes
2. Rigidify the problem to get more structure and less wiggle-room
3. Show homotopy is automatically zero in dimension -2
There are four main steps

1. Reduce to a simpler case which faithfully sees the Kervaire classes
2. Rigidify the problem to get more structure and less wiggle-room
3. Show homotopy is automatically zero in dimension -2
4. Show homotopy is periodic with period 2^8
General Outline

There are four main steps

1. Reduce to a simpler case which faithfully sees the Kervaire classes
2. Rigidify the problem to get more structure and less wiggle-room
3. Show homotopy is automatically zero in dimension -2
4. Show homotopy is periodic with period 2^8
Reduction to Simpler Cases

Contains our classes $\text{Ext}_A(\mathbb{F}_2, \mathbb{F}_2)$

Adams SS
Reduction to Simpler Cases

Adams-Novikov SS

“More initial”
More complicated Ext

Adams SS

Contains our classes
$\text{Ext}_\mathcal{A}(F_2, F_2)$
Reduction to Simpler Cases

Adams-Novikov SS

"More initial"
More complicated Ext

Adams SS
Contains our classes
Extₐ(ℤ₂, ℤ₂)

HFP SS
Algebraically simple
H*(ℤ/8; R)

Contains our classes
Extₐ(ℤ₂, ℤ₂)

Ext A(ℤ₂, ℤ₂)
Reduction is purely algebraic!
Reduction is purely algebraic!
Passage from Adams to Adams-Novikov is well understood.
Reduction is purely algebraic!
Passage from Adams to Adams-Novikov is well understood.
Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory.
Reduction is purely algebraic!
Passage from Adams to Adams-Novikov is well understood.
Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory.
So good choice of R gives us something that is
Reduction is purely algebraic!
Passage from Adams to Adams-Novikov is well understood. Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory. So good choice of R gives us something that is

- easily computable
Reduction is purely algebraic!
Passage from Adams to Adams-Novikov is well understood. Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory. So good choice of R gives us something that is
- easily computable
- strong enough to detect the classes.
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure:
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure: equivariance.
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure: equivariance.
- Here have fixed points, rather than homotopy fixed points.
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure: equivariance.
- Here have fixed points, rather than homotopy fixed points.
- And there are spheres for every real representation.
Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure: equivariance.
- Here have fixed points, rather than homotopy fixed points.
- And there are spheres for every real representation.

Example

If $G = \mathbb{Z}/2$, then have $S^{\rho_2} = \mathbb{C}^+$ and S^2.
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps: trivial rep 1 and sign rep σ and 2-dim reps: L, L_2, L_3. We care only about $\rho_{8} = 1 \oplus \sigma \oplus L \oplus L_2 \oplus L_3$. Plus the regular reps for subgroups.
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z},
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:
- trivial rep 1
Important Representations

Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:

- trivial rep 1
- sign rep σ
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:

- trivial rep 1
- sign rep σ

and 2-dim reps: L, L^2, L^3.
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:

- trivial rep 1
- sign rep σ

and 2-dim reps: L, L^2, L^3.

We care only about $\rho_8 = 1 \oplus \sigma \oplus L \oplus L^2 \oplus L^3$.
Focus now on $G = \mathbb{Z}/8$.

$RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z}, generated by 1-dim reps:
- trivial rep 1
- sign rep σ

and 2-dim reps: L, L^2, L^3.

We care only about $\rho_8 = 1 \oplus \sigma \oplus L \oplus L^2 \oplus L^3$. Plus the regular reps for subgroups.
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “induce” up to a $\mathbb{Z}/8$ spectrum:
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “Induce” up to a $\mathbb{Z}/8$ spectrum:

$$MU \bigotimes MU \bigotimes MU \bigotimes MU \bigotimes MU$$
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “Induce” up to a $\mathbb{Z}/8$ spectrum:
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “induce” up to a $\mathbb{Z}/8$ spectrum:

μ with $\mathbb{Z}/2$ given by complex conjugation.

```
1
2
```

```
Begin with $MU$ with $\mathbb{Z}/2$ given by complex conjugation.
```

```
“induce” up to a $\mathbb{Z}/8$ spectrum:
```

μ with $\mathbb{Z}/2$ given by complex conjugation.
1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “Induce” up to a $\mathbb{Z}/8$ spectrum:

$$
\begin{array}{c}
\phantom{\text{MU}} \\
\text{MU} \boxtimes \text{MU} \boxtimes \text{MU} \boxtimes \text{MU} \\
\end{array}
$$

3. The “fixed points” for the $\mathbb{Z}/8$-action is geometric.
What is R?

1. Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
2. “induce” up to a $\mathbb{Z}/8$ spectrum:

 \[\begin{array}{c}
 \text{MU} \\
 \otimes \\
 \text{MU} \\
 \otimes \\
 \text{MU} \\
 \otimes \\
 \text{MU}
 \end{array} \]

3. The “fixed points” for the $\mathbb{Z}/8$-action is geometric.
4. Inverting an equivariant class Δ makes the fixed points and homotopy fixed points agree.
Advantages of the Slice SS
Advantages of the Slice SS
Basic Idea of Slices

Want to decompose X into computable pieces.
Basic Idea of Slices

Want to decompose X into computable pieces. Similar to Postnikov tower.
Basic Idea of Slices

Want to decompose \(X \) into computable pieces. Similar to Postnikov tower. Key difference: don’t use all spheres!
Basic Idea of Slices

Want to decompose X into computable pieces. Similar to Postnikov tower. Key difference: don’t use all spheres!

Acceptable Ones

- S^{k_8}, S^{k_8-1}

Unacceptable Ones

- S^{k_8-2}
Basic Idea of Slices

Want to decompose X into computable pieces. Similar to Postnikov tower.
Key difference: don’t use all spheres!

Acceptable Ones
1. $S^{k\rho_8}, S^{k\rho_8 - 1}$
2. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/4 \ S^{k\rho_4}$

Unacceptable Ones
1. $S^{k\rho_8 - 2}$
2. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/4 \ S^\sigma$
Basic Idea of Slices

Want to decompose X into computable pieces.

Similar to Postnikov tower.

Key difference: don’t use all spheres!

Acceptable Ones

1. $S^{k\rho_8}$, $S^{k\rho_8-1}$
2. $\mathbb{Z}/8^+ \wedge \mathbb{Z}/4 \ S^{k\rho_4}$
3. $\mathbb{Z}/8^+ \wedge \mathbb{Z}/2 \ S^{k\rho_2}$

Unacceptable Ones

1. $S^{k\rho_8-2}$
2. $\mathbb{Z}/8^+ \wedge \mathbb{Z}/4 \ S^\sigma$
3. $\mathbb{Z}/8^+ \wedge \mathbb{Z}/2 \ S^{\sigma-1}$
Basic Idea of Slices

Want to decompose X into computable pieces. Similar to Postnikov tower. Key difference: don’t use all spheres!

Acceptable Ones

1. $S^{k\rho_8}$, $S^{k\rho_8-1}$
2. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/4 \ S^{k\rho_4}$
3. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/2 \ S^{k\rho_2}$
4. $\mathbb{Z}/8_+ \wedge S^k$

Unacceptable Ones

1. $S^{k\rho_8-2}$
2. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/4 \ S^\sigma$
3. $\mathbb{Z}/8_+ \wedge \mathbb{Z}/2 \ S^{\sigma-1}$
4. S^k
Computing with Slices

Key Fact

For spectra like MU, slices can be computed from equivariant simple chain complexes.
Computing with Slices

Key Fact

For spectra like MU, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.
Computing with Slices

Key Fact
For spectra like MU, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for S^{p_4-1}
Gives the chain complex

$$= C_\cdot.$$
Key Fact

For spectra like MU, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for $S^{ρ4−1}$

Gives the chain complex

$$\mathbb{Z} = C_•.$$
Computing with Slices

Key Fact

For spectra like \textit{MU}, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for $S^{ρ_4−1}$

Gives the chain complex

\[\mathbb{Z}^2 \rightarrow \mathbb{Z} = C. \]
Computing with Slices

Key Fact

For spectra like MU, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for $S^{ρ4−1}$

Gives the chain complex

$$\mathbb{Z}^4 \to \mathbb{Z}^4 \to \mathbb{Z}^2 \to \mathbb{Z} = C.$$
Computing with Slices

Key Fact

For spectra like MU, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for $S^{ρ_4-1}$

Gives the chain complex

$$\mathbb{Z}^4 \rightarrow \mathbb{Z}^4 \rightarrow \mathbb{Z}^2 \rightarrow \mathbb{Z} = C_•.$$

Maps determined by $H_*(C_•) = H_*(S^3)$.
For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8_+ \wedge_H S^p$,

$$H^{-2}(C_{\mathbb{Z}/8}^*) = 0$$
Theorem

For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8_+ \wedge_H S^{p_H}$,

$$H_{-2}(C_*^{\mathbb{Z}/8}) = 0$$

The proof is an easy direct computation:
For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8_+ \wedge_H S^{\rho_H}$,

$$H_{-2}(C_*^{\mathbb{Z}/8}) = 0$$

The proof is an easy direct computation:

1. If $k \geq 0$, then we are looking at something connected.
For any non-trivial subgroup \(H \) of \(\mathbb{Z}/8 \) and for any slice sphere \(\mathbb{Z}/8_+ \wedge _ \mathbb{S}^\rho H \),
\[
H_{-2}(C_{_}^{\mathbb{Z}/8}) = 0
\]

The proof is an easy direct computation:

1. If \(k \geq 0 \), then we are looking at something connected.
2. If \(k \leq 0 \), then we look at the associated cochain algebra.
Gaps

Theorem

For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8_+ \wedge_H S^{\rho_H}$,

$$H_{-2}(C^{\mathbb{Z}/8}_*) = 0$$

The proof is an easy direct computation:

1. If $k \geq 0$, then we are looking at something connected.
2. If $k \leq 0$, then we look at the associated cochain algebra.
3. In the relevant degrees, the complex is $\mathbb{Z} \to \mathbb{Z}^2$ by $1 \mapsto (1,1)$.

Theorem

$$
\pi_{-2}(R) = 0.
$$
Gap Theorem

Theorem

\[\pi_{-2}(R) = 0. \]

Proof.
Theorem

\[\pi_{-2}(R) = 0. \]

Proof.

Slices of \(MU \otimes MU \otimes MU \otimes MU \) are all of the form

\[H\mathbb{Z} \otimes (\mathbb{Z}/8 \otimes_H S^{k\rho_H}). \]
Gap Theorem

Theorem

\[\pi_{-2}(R) = 0. \]

Proof.

- Slices of \(MU \otimes MU \otimes MU \otimes MU \) are all of the form
 \[H\mathbb{Z} \otimes (\mathbb{Z}/8 \otimes_H S^{k\rho_H}) \].
- Class we are inverting is carried by an \(S^{k\rho_8} \).
Theorem

\[\pi_{-2}(R) = 0. \]

Proof.

- Slices of \(MU \otimes MU \otimes MU \otimes MU \) are all of the form

\[H\mathbb{Z} \otimes (\mathbb{Z}/8 \otimes_H S^{k\rho_H}). \]

- Class we are inverting is carried by an \(S^{k\rho_8} \).
- Inversion is a colimit and first steps show \(\pi_{-2} = 0. \)
Take Home Message
Take Home Message

Happy A_5 Birthday, Bob and Ron!