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Abstract

Let E be a homotopy commutative ring spectrum, and suppose the
ring of cooperations F, F is flat over FE.. We wish to address the following
question: given a commutative F.-algebra A in F, E-comodules, is there
an Eo-ring spectrum X with E. X = A as comodule algebras? We will
formulate this as a moduli problem, and give a way — suggested by work
of Dwyer, Kan, and Stover — of dissecting the resulting moduli space as
a tower with layers governed by appropriate André-Quillen cohomology
groups. A special case is A = E, F itself. The final section applies this to
discuss the Lubin-Tate or Morava spectra E,.

Some years ago, Alan Robinson developed an obstruction theory based on
Hochschild cohomology to decide whether or not a homotopy associative ring
spectrum actually has the homotopy type of an A, -ring spectrum. In his
original paper on the subject [35] he used this technique to show that the Morava
K-theory spectra K(n) can be realized as an A,-ring spectrum; subsequently,
in [3], Andrew Baker used these techniques to show that a completed version of
the Johnson-Wilson spectrum E(n) can also be given such a structure. Then,
in the mid-90s, the second author and Haynes Miller showed that the entire
theory of universal deformations of finite height formal group laws over fields of
non-zero characteristic can be lifted to Ao -ring spectra in an essentially unique
way. This implied, in particular, that the Morava E-theory (or Lubin-Tate)
spectra F,, were Ay, (which could have been deduced from Baker’s work), but
it also showed much more. Indeed, the theory of Lubin and Tate [25] gives
a functor from a category of finite height formal group laws to the category
of complete local rings, and one way to state the results of [34] is that this
functor factors in an essentially unique way through A..-ring spectra. It was
the solution of the diagram lifting problem that gave this result its additional
heft; for example, it implied that the Morava stabilizer group acted on E,, —
simply because Lubin-Tate theory implied that this group acted on (E,,)..

In this paper, we would like to carry this program several steps further.
One step forward would be to address E.-ring spectra rather than A, -ring
spectra. There is an existing literature on this topic developed by Robinson
and others, some based on I'-homology. See [36], [37], and [4]. This can be
used, to prove, among other things, that the spectra F,, are F.,, and we guess
that the obstruction theory we uncover here reduces to that theory. Another
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step forward would be to write down and try to solve the realization problem
as a moduli problem: what is the space of all possible realizations of a spectrum
as an A, or Eo-ring spectrum, and how can one calculate the homotopy type
of this space? Robinson’s original work on Morava K-theory implied that this
space would often have many components or, put another way, that there could
be many A,.-realizations of a fixed homotopy associative spectrum. A third
step forward would be to build a theory that easily globalizes; that is, we might
try to realize a diagram of commutative rings by a diagram of F.,-ring spectra,
or we might try to come to terms with some sheaf of commutative rings. One
particular such sheaf we have in mind is the structure sheaf of a moduli stack
of elliptic curves, but one could also consider the structure sheaf of the moduli
stack of formal group laws. In fact, many of our examples arise by examining
pieces of this latter stack. A final step forward would be to build a theory
that passes directly from algebra to F, or A,.-ring spectra, rather than by an
intermediate pass through the stable homotopy category. This would be in line
with the Lubin-Tate lifting of the previous paragraph.

Let us expand on some of these points.

The FE.-realization problem is more subtle than the A..-problem. If X is
a spectrum, the free Aso-ring spectrum A(X) on X has the homotopy type of
Vi>0X ", so that if E, is a homology theory with a Kiinneth spectral sequence
and F, X is flat over E,, then E,A(X) is isomorphic to the tensor algebra over
E, on E.(X). This basic computation underlies much of the rest of the theory.
However, the free E-ring spectrum £(X) has the homotopy type of

\/ (BE,)s As, X
n>0

where EY, is a free contractible ¥,-space. To compute E.E(X) would require,
at the very least, knowledge of E,BY, and, practically, one would need define
and understand a great deal about the F, Dyer-Lashof algebra. Even if this
calculation could be made, one would be left with a another problem. In trying
to realize some commutative F,-algebra A in E,FE comodules as an F, ring
spectrum, one might not be able or might not want to stipulate a Dyer-Lashof
algebra structure on A. Indeed, our problem is simply to realize A as a com-
mutative algebra — not to realize A with some stipulated Dyer-Lashof algebra
structure. Thus, any theory we build must allow for this flexibility.

Our solution is to resolve an E, operad by a simplicial operad which at once
yields this desired flexibility and the possibility of computing the E,-homology
of a free object. This has the drawback, of course, of getting us involved with
the cohomology of simplicial objects over simplicial operads. Part of the point of
this paper is to demonstrate that this is workable and, in fact, leads into familiar
territory. See section 6 and, more generally, [18]. It is here that the Dyer-Lashof
operations — which have to arise somewhere — reappear in an explicit manner.

The moduli space of all possible realizations of a commutative E,-algebra
A in E,FE-comodules is a Dwyer-Kan classification space in the sense of [12].
Let £(A) be the category whose objects are Fo-spectra X with F,. X = A as



commutative F,-algebras in E, E-comodules. The morphisms are morphisms of
E.-ring spectra which are F,-isomorphisms. The moduli space 7 M (A) of all
realizations of A is the nerve of this category. According to Dwyer and Kan,
there is a weak equivalence

TM(A) ~ [ [ B Aut(X)
X

where X runs over E,-isomorphism classes of objects in £(A) and Aut(X) is the
monoid of self equivalences of a cofibrant-fibrant model for X. Pleasant as this
result is, it is not really a computation in this setting; for example, we cannot
immediately tell if this space is non-empty or not. Thus, we need some sort of
decomposition of 7 M (A) with computable and, ideally, algebraic input. This is
accomplished in Section 5; the algebraic input is an André-Quillen cohomology
of A with coefficients in shifted versions of A. The basic theory for this kind
of construction is spelled out in [6]; the exact result we obtain is gotten by
combining Proposition 5.2, Proposition 5.5, and Theorem 5.8. Keeping track of
basepoints in the resulting tower decomposition of 7 M (A) yields an obstruction
theory for realizing A. The details are in 5.9.

This material works equally well for A,.-structures. In this case the André-
Quillen cohomology we obtain is exactly the Quillen cohomology of associative
algebras; see [30]. Except possibly in degree zero, this is a shift of Hochschild
homology, as one might expect from Robinson’s work.

One detail about this theory is worth examining here: the moduli space
T M(A) and its decomposition do not require the existence of a homotopy asso-
ciative or commutative ring spectrum X with F, X = A. Of course, in practice,
such an X might be required for another reason. For example, in the basic case
where A = E,FE, then we need X = F to exist and be a homotopy commutative
ring spectrum.

Here is an outline of the paper. In the first section, we confront the foun-
dations. There are many competing, but Quillen equivalent, models for spectra
in the literature. We write down exactly what we need from any given model,
and point out that there exist models which have the requisite properties. The
next two sections are about resolutions, first of operads, and then of spectra
and algebras in spectra over operads. Here is where the resolution (or “Ey”)
model category structures of Dwyer, Kan, and Stover ([14],[15]) come in. We
use an elegant formulation of this theory due to Bousfield [9]. Section 4 is de-
voted to a definition of the requisite André-Quillen cohomology groups and to
a spectral sequence for computing the homotopy type of the mapping space of
FE-maps between two F.-ring spectra. Again we emphasize that the Es-term
of this spectral sequence requires no knowledge of a Dyer-Lashof structure. Sec-
tion 5 introduces the decomposition of the moduli space. Section 6 talks about
methods of calculation, and Section 7 applies these techniques to the example
of the diagram of Lubin-Tate spectra — the Hopkins-Miller theorem in F..-ring
spectra. The result is the same as for A,,-case.

Two notation conventions: First, for two objects in a model category,
the space of maps map(X,Y’) will always mean the derived simplicial mapping



set of maps. All our model categories will be simplicial model categories; hence
map(X,Y) is weakly equivalence to the simplicial mapping set out of cofibrant
model for X into a fibrant model for Y. Alternatively, one can write down
map(X,Y) as the nerve of an appropriate diagram category, such as the Dwyer-
Kan hammock localization [13].

Second, if X is a simplicial object in some category C, then we will say X is
s-free if the underlying degeneracy diagram is free. This means there are objects
Z,, € C and isomorphisms

X, = H Zom

¢:[n]—[m]

where ¢ runs over the surjections in the ordinal number category. Furthermore,
these isomorphisms respect degeneracy maps of X in the obvious way.
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1 The ground category: which category of spec-
tra to use?

In the original drafts of these notes, and in other papers on this subject, we used
the category of spectra developed by Lewis, May, and Steinberger in [26]. This
had a number advantages for us; in particular, every object is fibrant in this
category, and the role of the operads is explicit, even elegant. We needed every
object to be fibrant so that we could apply the theory of Stover resolutions and
the Ep-model categories of [14] to build our resolutions. However, since that
time Bousfield [9] and Jardine [24] have both shown that it is possible to remove
the condition that every object is fibrant and still have a theory of Es-model
categories — or, as we (and Bousfield) prefer to call them, resolution model
categories. This opened up the possibility of using any one of a number of other
models for spectra — in fact almost any will now do. We get a nice synergy



with operads if the underlying category has a closed symmetric monoidal smash
product, so we will choose one of the current such models with this property.
The point of this section is to produce an exact statement of what we need, along
with some examples. This statement is broken into two parts: see Axioms 1.1
and Axioms 1.4 below.

We note that we are surrendering one facet of the previous discussion by this
move away from LMS spectra. It turns out the homotopy category of C-algebras
in spectra, where C' is some operad, depends only on the weak equivalence type
of C' in the nailvest possible sense, which is in sharp distinction to the usual
results about, say, spaces. (The exact result is below, in Theorem 1.6.) For
the LMS spectra this fact comes down to the fact that one must use operads
over the linear isometries operad, and such operads always have free actions by
the symmetric groups. For the categories under discussion here, however, the
reasons are less transparent, because they are buried in the definition of the
smash product — and only an avatar of this freeness appears in the last of our
axioms (in 1.4) for spectra.

To begin, here is exactly we will need about the symmetric monoidal struc-
ture. For the language of model categories, see [21]. In particular, the concepts
of a monoidal model category and of a module over a monoidal category is dis-
cussed in Chapter 4.2 of that work. Specifically, simplicial sets are a monoidal
model category and a simplicial model category is a module category over sim-
plicial sets. For any category of spectra, the action of a simplicial set K on a
spectrum X should be, up to weak equivalence, given by the formula

whenever this makes homotopical sense. Here the functor (—) means adjoin a
disjoint basepoint. This is the point of axiom 3 below.

1.1 Axioms for Spectra. We will assume that we have some category S of
spectra which satisfy the following conditions:

1.) The category S is a cofibrantly generated proper stable simplicial model
category Quillen equivalent to the Bousfield-Friedlander [10] category of
simplicial spectra; furthermore, S has a generating set of cofibrations and
a generating set of acyclic cofibrations with cofibrant source.

2.) The category S has a closed symmetric monoidal smash product which
descends to the usual smash product on the homotopy category; further-
more, with that monoidal structure, S is a monoidal model category.

3.) The smash product behaves well with respect to the simplicial structure;
specifically, if S is the unit object of the smash product, then there is a
natural monoidal isomorphism

XK XA(S®K).



Note that Axiom 1 guarantees, among other things, that the homotopy cat-
egory is the usual stable category.

We immediately point out that at least three of the favorite candidates for
such a category satisfy these axioms. Symmetric spectra built from simplicial
sets are discussed in [22]; symmetric spectra and orthogonal spectra built using
topological spaces are defined and discussed in [27]. The spectra known as S-
modules are built from topological spaces and are discussed in [16]. It is worth
pointing out that S-modules are built on and depend on LMS spectra [26].
The categories of symmetric spectra and of orthogonal spectra have at least two
Quillen equivalent model category structures on them. For the next result either
would do; later results will require the “positive” model category structure of

[27), §14.

1.2 Theorem. The category of symmetric spectra (in spaces or simplicial sets),
the category of orthogonal spectra, and the category of S-modules satisfy the
azrioms 1.1.

Proof. Axioms 1, 2, and 3 are explicit in [22] for symmetric spectra in simpli-
cial sets. For othogonal spectra, symmetric spectra in spaces, and S-modules,
we note that these categories are not immediately simplicial model categories,
but topological model categories. But any topological model category is auto-
matically a simplicial model category via the realization functor. Then Axioms
1, 2, and 3 are in [27] for symmetric and orthogonal spectra and in [16] for
S-modules. O

As with all categories modeling the stable homotopy category one has to
explicitly spell out what one means by some familiar terms.

1.3 Notation for Spectra. The following remarks and notation will be used
throughout this paper.

1.) We will use the words cofibrant and cellular interchangeably. The gener-
ating cofibrations of S are usually some sort of inclusion of spheres into
cells.

2.) We will write [X, Y] for the morphisms in the homotopy category Ho(S).
As usual, this is 7y for some derived space of maps. See point (5) below.

3.) In the category S it is possible (indeed usual) that the unit object S for
the smash product (“the zero-sphere”) is not cofibrant. We will write S*,
—00 < k < oo for a cofibrant model for the k-sphere unless we explicitly
state otherwise. In this language the suspension functor on the homotopy
category is induced by

X—XASh

Also the suspension spectrum functor from pointed simplicial sets to spec-
tra is, by axiom 3, modeled by

0
KHSO/\Kdng
SO @ *



Note that if the unit object S is not cofibrant, the functor S ® (—) is not
part of a Quillen pair.

4.) Let K be a simplicial set and X € §. We may write X A K for the
tensor object X ® K. This is permissible by axiom 3 and in line with the
geometry. The exponential object in S will be written X .

5.) We will write map(X,Y’) or mapg(X,Y) for the derived simplicial set of
maps between two objects of S. Thus, map(X,Y’) is the simplicial map-
ping space between some fibrant-cofibrant models (“bifibrant”) models for
X and Y. This can be done functorially if necessary, as the category S is
cofibrantly generated. Alternatively, we could use some categorical con-
struction, such as the Dwyer-Kan hammock localization. Note that with
this convention

momap(X,Y) = [X,Y].

6.) We will write F/(X,Y) for the function spectrum of two objects X, Y € S.
The closure statement in Axiom 2 of 1.1 amounts to the statement that

Homgs (X, F(Y,Z)) = Homs(X A Y, Z).
This can be derived:
map(X, RF(Y, Z)) ~ map(X ALY, Z)

where the R and L refer to the total derived functors and map(—, —) is
the derived mapping space. In particular

T RE(Y,Z) = [2*Y, Z].
7.) If X is cofibrant and Y is fibrant, then there is a natural weak equivalence
map(X, Y) = map(s°, F(X,Y))

and the functor map(S°, —) is the total right derived functor of the sus-
pension spectrum functor from pointed simplicial sets to S. Thus we could
write

map(X,Y) ~ Q®F(X,Y).

In particular, map(X,Y") is canonically weakly equivalent to an infinite
loop space.

We need a notation for iterated smash products. So, define

xm e A A X.
—n—>
This paper is particularly concerned with the existence of A, and F..-ring
spectrum structures. Thus we we must introduce the study of operads acting
on spectra.



Let O denote the category of operads in simplicial sets. Our major source
of results for this category is [33]. The category O is a cofibrantly generated
simplicial model category where C — D is a weak equivalence or fibration if
each of the maps C'(n) — D(n) is a weak equivalence or fibration of ¥,,-spaces in
the sense of equivariant homotopy theory. Thus, for each subgroup H C %,,, the
induced map C(n)# — D(n)# is a weak equivalence or fibration. The existence
of the model category structure follows from the fact that the forgetful functor
from operads to the category with objects X = {X(n)},>0 with each X (n) a
Y,-space has a left adjoint with enough good properties that the usual lifting
lemmas apply.

If C' is an operad in simplicial sets, then we have a category of Alg. of
algebras over C' is spectra. These are exactly the algebras over the triple

X — C(X) ¥ Vp20C(n) @5, XM,

Note that we should really write X(™) @x _C(n), but we don’t.

The object C(x) =2 S ® C(0) is the initial object of Alg~. If the operad is
reduced — that is, C(0) is a point — then this is simply S itself.

If f: C'— D is morphism of operads, then there is a restriction of structure
functor f. : Algp — Alg., and this has a left adjoint

I ' Deg (=) : Alge — Algp

The categories Alg. are simplicial categories in the sense of Quillen and both
the restriction of structure functor and its adjoint are continuous. Indeed, if
X € Alg, and K is a simplicial set, and if X% is the exponential object of
K in S, then X¥ is naturally an object in Alg, and with this structure, it is
the exponential object in S¢. Succinctly, we say the forgetful functor makes
exponential objects. It also makes limits and reflexive coequalizers, filtered
colimits, and geometric realization of simplicial objects.

Here is our second set of axioms. The numbering continues that of Axioms
1.1.

1.4 Axioms for Spectra. Suppose we are given some category S of spectra
satisfying the axioms of 1.1. Then we further require that

4.) For a fixed operad C € O, define a morphism of X — Y of C-algebras in
spectra to be a weak equivalence or fibration if it is so in spectra. Then the
category Alg. becomes a cofibrantly generated simplicial model category.

5.) Let n > 1 and let K — L be a morphism of ¥,, spaces which is a weak
equivalence on the underlying spaces. Then for all cofibrant spectra X,
the induced map on orbit spectra

Koy X" = Loy XM

is a weak equivalence of spectra.



We immediately note that we have examples.

1.5 Proposition. Let S be any of the categories of symmetric spectra in topo-
logical spaces, orthogonal spectra, or S-modules. Then S satisfies the axioms of

1.4.

Proof. First, axiom 4. For S-modules, this is nearly obvious, from a standard
argument that goes back to Quillen, but see also [33] or [5] for the argument in
the context of operads. In brief, since Alg,- has a functorial path object and
the forgetful functor to S creates filtered colimits in Alg, we need only supply
a fibrant replacement functor for Alg.. But every object is fibrant.

For symmetric or orthogonal spectra, the argument goes exactly as in §15
of [27]. The argument there is only for the commutative algebra operad, but
it goes through with no changes for the geometric realization of an arbitrary
simplicial operad.

Axiom 5 in all these cases follows from the observation that for cofibrant X
(in the positive model category structure where required), the smash product
X ™) is actually a free ¥,,-spectrum. For symmetric and orthogonal spectra, see
Lemma 15.5 of [27]; for S-modules see Theorem II1.5.1 of [16]. O

We would guess this result is also true for symmetric spectra in simplicial
sets, but this is not immediately obvious: the case of symmetric spectra in
spaces uses that the inclusion of a sphere into a disk is an N D R-pair.

The following result is why we put the final axiom into our list 1.4.

1.6 Theorem. Let C — D be a morphism of operads in simplicial sets. Then
the adjoint pair
friAlgy ——= Algp : f.

15 a Quillen pair. If, in addition, the morphism of operads has the the property
that C(n) — D(n) is a weak equivalence of spaces for all n > 0, this Quillen
pair is a Quillen equivalence.

Proof. The fact that we have a Quillen pair follows from the fact that the
restriction of structure functor (the right adjoint) f. : Alg, — Alg. certainly
preserves weak equivalences and fibrations.

For the second assertion, first note that since f, reflects weak equivalences,
we need only show that for all cofibrant X € Alg., the unit of the adjunction

X = fif'X=D®cX

is a weak equivalence. If X = C(Xj) is actually a free algebra on a cofibrant
spectrum, then this map is exactly the map induced by f:

C(Xo) = \/ C(n)+ As, XV =\ D(n)4 As, X = D(Xo).

For this case, Axiom 5 of 1.4 supplies the result. We now reduce to this case.



Let X € S° be cofibrant. We will make use of an augmented simplicial
resolution
P,—X

with the following properties:

i.) the induced map |P,| — X from the geometric realization of P, to X is a
weak equivalence;

ii.) the simplicial C-algebra is s-free on a set of C-algebras {C(Z,)} where
each Z, is a cofibrant spectrum. (The notion of s-free was defined at the
end of the introduction.)

There are many ways to produce such a P,. For example, we could take an
appropriate subdivision of a cofibrant model for X in the resolution model cat-
egory for simplicial C-algebras based on the homotopy cogroup objects C'(S™),
—oco<n<oo !

Given P,, consider the diagram

(1.1) [Po| ——[ff"Ps|

L

X——ff"X
For all n, we have an isomorphism

b:[n]—[K]

where ¢ runs over the surjections in the ordinal number category. Thus we can
conclude that P, — f.f*P, is a weak equivalence and that both P, and f, f* P,
are Reedy cofibrant. The result now follows from the diagram 1.1. O

We now make precise the observation that Theorem 1.6 implies that the
notion of, for example, an F, ring spectrum is independent of which E., operad
we choose.

First we recall the Dwyer-Kan [12] classification space in a model category.
Let M be a model category and let E be a subcategory of M which has the
twin properties that

1.) if X is an object in E and Y is weakly equivalent to X, then Y € E;

2.) the morphisms in E are weak equivalences and if f : X — Y is a weak
equivalence in M between objects of E, then f € E.

For example, E might have the same objects as M and all weak equivalences,
in which case we will write E(M).

1Resolution model categories are reviewed in section 3.

10



Let BE denote the nerve of the category E. While the category E might not
be small, one of the theorems of Dwyer and Kan is that it is homotopically small
in the sense that each component has the weak homotopy type of a simplicial
set; thus, by limiting the objects of interest in some way we obtain a useful weak
homotopy type. In fact, there is a formula for this weak homotopy type:

BE ~ [ BAutm(X)
[X]

where [X] runs over the weak homotopy types in E and Aut aq(X) is the (derived)
monoid of self-weak equivalences of X.
To this can be added the following result, immediate from Theorem 1.6.

1.7 Corollary. Let C' — D be any morphism of simplicial operads so that
C(n) — D(n) is a weak equivalence of spaces for all n > 0. Then the natural
map induced by restriction of structure

BE(S?) — BE(S°)
s a weak equivalence.

1.8 Remark. 1.) Note that Theorem 1.6 and Corollary 1.7 do not require that
the operads be cofibrant. Thus, if we define an E.-operad C' to be an operad so
that each C'(n) is a free and contractible ¥,,-space, then C' is weakly equivalent to
the commutative monoid operad Comm which is simply a point in each degree.
These results then say that the category of E..-ring spectra (algebras over C)
is Quillen equivalent to the category of commutative S-algebras (algebras over
Comm).

2.) Let C' € O be an operad in simplicial sets and let X be a spectrum.
We now define the moduli space C[X] of C-algebra structures on X by the
homotopy pull-back diagram

C[X] — BE(SP)

L

(X} — > BE(S).

Thus, for example, C[X] is not empty if and only if X has a C-algebra structure.
Note that Corollary 1.7 implies that C[X] is independent of C' up to the naivest
sort of weak equivalence.

In the case of spaces (rather than spectra) Charles Rezk has shown in [33]
that C[X] is equivalent to the (derived) space of operad maps from C to the
endomorphism operad of X. Furthermore, he gives a way of approaching the
homotopy type of C[X] using a type of Hochschild cohomology. A similar result
is surely true here; see the last sections of [34] for more details on this approach.

Our project is slightly different. Rather than beginning with a spectrum X
we will begin with an algebraic model and try to construct E-ring spectrum
from this data. In effect, we deal directly with BE(SP).
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2 Simplicial spectra over simplicial operads

Simplicial objects have often been used to build resolutions and that is our main
point here, also. However, given an algebra X in spectra over some operad, we
will resolve not only X, but the operad as well. The main results of this section
are that if X is a simplicial algebra over a simplicial operad T' then the geometric
realization | X| is an algebra over the geometric realization |T'| and, furthermore,
that geometric realization preserves level-wise weak equivalences between Reedy
cofibrant objects, appropriately defined.

Let’s begin by talking about simplicial operads. As mentioned in the previ-
ous section, the category of operads O is a simplicial model category. From this
one gets the Reedy model category structure on simplicial operads sO ([32]),
which are the simplicial objects in 0.2 Weak equivalences are level-wise and
cofibrations are defined using the latching objects. The Reedy model category
structure has the property that geometric realization preserves weak equiva-
lences between cofibrant objects. It also has a structure as a simplicial model
category; for example if T" is a simplicial operad and K is simplicial set, then

% ={T;\}.

However, note that this module structure over simplicial sets is inherited from
O and is not the simplicial structure arising externally, as in [31], §IL.2.

Let us next spell out the kind of simplicial operads we want. If F, is the
homology theory of a homotopy commutative ring spectrum and C' is an operad
in O, one might like to compute F,.C(X). As mentioned in the introduction,
this is usually quite difficult, unless F.X is projective as an F, module and
moC(q) is a free X -set for all g. Thus we’d like to resolve C' using operads of
this sort.

If T is a simplicial operad and F is a commutative ring spectrum in the
homotopy category of spectra, then E,T is a simplicial operad in the category
of E, modules. The category of simplicial operads in F, modules has a simplicial
model category structure in the sense of §I1.4 of [31], precisely because there
is a free operad functor. Cofibrant objects are retracts of diagrams which are
“free” in the sense of [31]; meaning the underlying degeneracy diagram is a free
diagram of free operads.

Given an operad C' € O, we’d like to consider simplicial operads T of the
following sort:

2.1 Theorem. Let C' € O be an operad. Then there exists an augmented
simplicial operad
T—C

so that

1.) T is Reedy cofibrant as a simplicial operad;

2These are bisimplicial operads, but when we say simplicial operad, we will mean a sim-
plicial object in O, emphasizing the second (external) simplicial variable as the resolution
variable. The first (internal) simplicial variable will be regarded as the geometric variable.
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2.) For each n >0 and each ¢ > 0, moTy,(q) is a free L4-set;

3.) The map of operads |T| — C induced by the augmentation is a weak
equivalence;

4.) If E.C(q) is projective as an E, module for all q, then E,T is cofibrant as
a simplicial operad in E, modules and E, T — E.C is a weak equivalance
of operads in that category.

This theorem is not hard to prove, once one has the explicit construction
of the free operad; for example, see the appendix to [33]. Indeed, here is a
construction: first take a cofibrant model C’ for C. Then, if Fp is the free
operad functor on graded spaces, one may take T" to be the standard cotriple
resolution of C’. What this theorem does not supply is some sort of uniqueness
result for T'; nonetheless, what we have here is sufficient for our purposes.

Note that if C' is the commutative monoid operad, then we can simply take
T to be a cofibrant model for C' in the category of simplicial operads and run it
out in the simplicial (i.e., external) direction. Then T is, of course, an example
of an F.,-operad; and F,T will be an F,-operad in E,-modules in the sense of
Definition 6.1.

Now fix a simplicial operad T' = {T,}. Since the free algebra functor X
C(X) is natural in X and the operad C, we see that if X is a simplicial spectrum,
sois T(X). Hence a simplicial algebra in spectra over T is a simplicial spectrum
X equipped with a multiplication map

TX)— X

so that the usual associativity and unit diagrams commute. In particular, if X =
{X,}, then each X, is a T),-algebra. Let s Alg; be the category of simplicial
T-algebras.

The category sAlg, is a simplicial model category. Recall that given a
morphism of operads C' — D, then the restriction of structure functor Alg, —
Alg. is continuous. This implies that if K is a simplicial set and X € s Algy,
we may define X ® K and X% level-wise; for example,

We could use this structure to define a geometric realization functor; how-
ever, we prefer to proceed as follows.

If M is a module category over simplicial sets, then the geometric realization
functor |- | : sM — M has a right adjoint

Y — YA ={ya")

where A™ is the standard n-simplex. In particular, this applies to simplical
operads, and we are interested in the unit of the adjunction 7' — |T'|%. If C is
any operad and Y is a C-algebra, then for all simplicial sets K, the spectrum
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YK is a CK algebra. From this it follows that Y2 is a simplicial C* algebra.
Setting C' = |T| and restricting structure defines a functor

Y - Y2 Alg — sAlgy .
The result we want is the following.

2.2 Theorem. Let T be a simplicial operad and X € sAlgy a simplicial T-
algebra. Then the geometric realization |X| of X as a spectrum has a natural
structure as a |T| algebra and, with this structure, the functor

is right adjoint to Y +— Y2,

Proof. We know that for an operad C' € O the forgetful functor from Alg. to
spectra makes geometric realization. Actually, what one proves is that if X is a
simplicial spectrum and C(X) is the simplicial C-algebra on X, then there is a
natural (in C' and X) isomorphism

C(|X)—lcX)l.

Now use a diagonal argument. If T is a simplicial operad and X is a simplicial
spectrum, then
T(X) = diag{T,(X,)}-

Since the functor D +— D(Y) is a continuous left adjoint, taking the realization
in the p-variable yields a simplicial object

{HTo (X} =AIT1(Xq)}-
Now take the realization in the ¢ variable and get
T(X)| = TI(1X])
using the fact about the constant case sited above. The result now follows. [

In light of Theorem 2.1 and Theorem 1.6, this theorem gives a tool for
creating homotopy types of algebras over operads.

The next item to study is the homotopy invariance of the geometric real-
ization functor, in this setting. The usual result has been cited above: real-
ization preserves level-wise weak equivalences between Reedy cofibrant objects.
The same result holds in this case, but one must take some care when defin-
ing “Reedy cofibrant”. The difficulty is this: the definition of Reedy cofibrant
involves the latching object, which is the colimit

L,X = colim X,,
¢:[n]—[m]

where ¢ runs over the non-identity surjections in the ordinal number category.
We must define this colimit if each of the X,, is an algbera over a different
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operad. The observation needed is the following. Let S : I — O be a diagram
of operads. Then an I-diagram of S-algebras is an I-diagram X : I — S of
spectra equipped with a natural transformation of I-diagrams

S(X)— X

satisfying the usual associativity and unit conditions. For example if I = A°P
one recovers simplicial S-algebras. Call the category of such Algg.®> Then one
can form the colimit operad colim S = colim; .S and there is a constant diagram
functor

AlgcolimS - AlgS

sending X to the constant I-diagram i — X where X gets an .S; structure via
restriction of structure along

S; — coljim S.

2.3 Lemma. This constant diagram functor has a left adjoint
X — colimy X.

Despite the notation, colimy X is not the colimit of X as an I diagram of
spectra; indeed, if X = S(Y') where Y is an I-diagram of spectra

colimy X 2 (colimy S)(colim; Y).
If T is a simplicial operad we can form the latching object

L, T = colim T,,.
$:[n]—[m]
There are natural maps L,T — T, of operads. If X is a simplicial T-algebra
we extend this definition slightly and define
L,X =T, ®,7 colim X,
A[n]—[m]
where, again, ¢ runs over the non-identity surjections in A. In short we extend
the operad structure to make L, X a T,-algebra and the natural map L, X —
X, a morphism of T},-algebras.
With this construction on hand one can make the following definition. Let
T be a simplicial operad and f : X — Y a morphism of simplicial T-algebras.
Then f is a level-wise weak equivalence (or Reedy weak equivalence) if each of
the maps X,, — Y,, is a weak equivalence of T,-algebras — or, by definition,
a weak equivalence as spectra. The morphism f is a Reedy cofibration if the
morphism of L, T-algebras

LnY |—|LnX Yn — Yn

is a cofibration of T),-algebras. The coproduct here occurs in the category of
T,-algebras. The main result is then:

3This is a slight variation on the notation sAlgp. If T is a simplicial operad, this new
notation would simply have us write Algs for s Algy. No confusion should arise.
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2.4 Theorem. With these definitions, and the level-wise simplicial structure
defined above, the category s Algy becomes a simplicial model category. Further-
more

1.) The geometric realization functor | — | : s Algp — Algp| sends level-wise
weak equivalences between Reedy cofibrant objects to weak equivalences;
and

2.) if T is Reedy cofibrant as a simplicial operad, then any Reedy cofibration
in s Algp is a Reedy cofibration of simplicial spectra.

The importance of the second item in this result is that, in light of Theorem
2.2, one can calculate the homotopy type of the geometric realization of a T-
algebra entirely in spectra.

3 Resolutions

Building on the results of the last section, we’d like to assert the following. Let
X be a simplicial algebra over a simplicial operad T', and suppose T satisfies all
the conclusions of Theorem 2.1. Then there is a simplicial T-algbera Y and a
morphism of T-algebras Y — X so that a.) |Y| — | X| is a weak equivalence and
b.) E.Y is cofibrant as an E,T algebra. The device for this construction is an
appropriate Stover resolution ([38],[14],[15]) and, particularly, the concise and
elegant paper of Bousfield [9].* We explain some of the details in this section.

We begin by specifying the building blocks of our resolutions. We fix a
spectrum F which is a commutative ring object in the homotopy category of
spectra. Let D(-) denote the Spanier-Whitehead duality functor.

3.1 Definition. A homotopy commutative and associative ring spectrum F
satisfies Adams’s condition if E can be written, up to weak equivalence, as a
homotopy colimit of finite cellular spectra E, with the properties that

1.) E.DE, is projective as an E,-module; and
1. for every module spectrum M over E the Kiinneth map
[DE,, M] — HomE*_mOd(E*DEa,M*)
is an isomorphism.

This is the condition Adams (following Atiyah) wrote down in [1] to guar-
antee that the (co-)homology theory over E has Kiinneth spectral sequences. If
M is a module spectrum over FE, then so is every suspension or desuspension of
M; therefore, one could replace the source and target of the map in part 2.) of
this definition by the corresponding graded objects.

4Bousfield’s paper is written cosimplicially, but the arguments are so categorical and so
clean that they easily produce the simplicial objects we require.
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Many spectra of interest satisfy this condition; for example, if E is the
spectrum for a Landweber exact homology theory, it holds. (This is implicit in
[1], and made explicit in [34].) In fact, the result for Landweber exact theories
follows easily from the example of MU, which, in turn, was Atiyah’s original
example. See [2]. Some spectra do not satisfy this condition, however — the
easiest example is HZ.

We want to use the spectra DE,, as detecting objects for a homotopy theory,
but first we enlarge the scope a bit.

3.2 Definition. Define P(E) =P to be a set of finite cellular spectra so that

1. the spectrum S° € P and E,X is projective as an E,-module for all
X eP;

2. for each « there is finite cellular spectrum homotopy equivalent to DFE,,
in P;
3. P is closed under suspension and desuspension;
4. P is closed under finite wedges; and
5. for all X € P and all E-module spectra M the Kiinneth map
(X, M] — Homy _1oq(E«X, M)
is an isomorphism.

The FEs or resolution model category which we now describe uses the set P
to build cofibrations in simplicial spectra and, hence, some sort of projective
resolutions.

Because the category of spectra has all limits and colimits, the category of
simplicial spectra is a simplicial category in the sense of Quillen using external
constructions as in §I1.4 of [31]. However, the Reedy model category structure on
simplicial spectra is not a simplicial model category using the external simplicial
structure; for example, if i : X — Y is a Reedy cofibration and j : K — L is a
cofibration of simplicial sets, then

i®j2X®LuX®KY®K~>Y®L

is a Reedy cofibration, it is a level-wise weak equivalence if ¢ is, but it is not
necessarily a level-wise weak equivalence if j is.
The following ideas are straight out of Bousfield’s paper [9].

3.3 Definition. Let Ho(S) denote the stable homotopy category.

1.) A morphism p: X — Y in Ho(S) is P-epi if p, : [P, X] — [P, Y] is onto
for each P € P.

2.) An object A € Ho(S) is P-projective if
Px [A,X}%[A, Y}

is onto for all P-epi maps.

17



3.) A morphism A — B of spectra is called P-projective cofibration if it has
the left lifting property for all P-epi fibrations in S.

The classes of P-epi maps and of P-projective objects determine each other;
furthermore, every object in P is P-projective. Note however, that the class
of P-projectives is closed under arbitrary wedges. The class of P-projective
cofibrations will be characterized below; see Lemma 3.7.

3.4 Lemma. 1.) The category Ho(S) has enough P-projectives; that is, for
every object X € Ho(S) there is a P-epi Y — X with Y P-projective.

2.) Let X be a P-projective object. Then E.X is a projective E.-module,
and the Kiinneth map

[X, M]_’HomE*—mod(E*X7 M,)
s an isomorphism for all E-module spectra M.

Proof. For part 1.) we can simply take

v=\ \ P

PeP f:P—>X

where f ranges over all maps P — X in Ho(S). Then, for part 2.), we note
that the evaluation map

vy=1\ \ P—X
PeEP f:P—X

has a homotopy section. Then the result follows from the properties of the
elements of P. O

We now come to the P-resolution model category structure. Recall that
a morphism f : A — B of simplicial abelian groups is a weak equivalence if
f« ™A — w, B is an isomorphism. Also f: A — B is a fibration if the induced
map of normalized chain complexes Nf : NA — NB is surjective in positive
degrees. The same definitions apply to simplicial R-modules or even graded
simplicial R-modules over a graded ring R. A morphism is a cofibration if it is
injective with level-wise projective cokernel.

3.5 Definition. Let f: X — Y be a morphism of simplicial spectra. Then
1.) the map f is a P-equivalence if the induced morphism
fe i [P, X]—[P,Y]
is a weak equivalence of simplicial abelian groups for all P € P;

2.) the map f is a P-fibration if it is a Reedy fibration and f, : [P, X]—[P, Y]
is a fibration of simplicial abelian groups for all P € P;
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3.) the map f is a P-cofibration if the induced maps
Xn |—ILnX LnY*)Y*n, n Z Oa
are P-projective cofibrations.

Then, of course, the theorem is as follows. Let sSp denote the category of
simplicial spectra with these notions of P-equivalence, fibration, and cofibration.

3.6 Theorem. With these definitions, the category sSp becomes a simplicial
model category.

The proof is given in [9]. We call this the P-resolution model category
structure. It is cofibrantly generated; furthermore there are sets of generat-
ing cofibrations and generating acyclic cofibrations with cofibrant source An
object is P-fibrant if and only if it is Reedy fibrant. The next result gives a
characterization of P-cofibrations.

Call a morphism X — Y of spectra P-free if it can be written as a compo-
sition

X —>XVF-+=Y
where ¢ is the inclusion of the summand, F' is cofibrant and P-projective, and
q is an acyclic cofibration. The following is also in [9].

3.7 Lemma. A morphism X — Y of spectra is a P-projective cofibration if
and only if it is a retract of P-free map.

There are two ways to characterize P-equivalences. The first comes directly
from the definition of P-equivalences. If X € sS and P € P, then

[P, X] = {[P, Xn]}
is a simplicial abelian group, and we may define
mi(X; P) = m[P, X].
Then, a morphism is a P-equivalence if and only if it induces an isomorphism
on m,(—; P) for all P € P.
There are other homotopy groups. Define “sphere objects” in sS as follows:
let P € P,n >0, and let A"/OA™ be the standard simplicial n-sphere. As

always, AY/0A° = (A®), is the two-point simplicial set. Then the nth P-
sphere P A A™/OA™ is defined by the push-out diagram

Pos=P—>P®A"/OA"

| |

x——> PAA"/OA"
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If X € sS is a simplicial spectrum, then the mapping space map(P, X) is a
loop space — in fact, an infinite loop space. Now define the “natural” homotopy
groups of a simplicial spectrum X by the formula

78 (X; P) = [P A A" /A", X]p = 7, map(P, X)

where we take the constant map as the basepoint of the mapping space. The
symbol [, ]p refers to morphisms in the homotopy category obtained from the
P-resolution model category structure.

The two notions of homotopy groups are related by the spiral exact sequence.
Let ¥ : Ho(S) — Ho(S) be the suspension operator on the homotopy category
of spectra.

3.8 Proposition. For all P € P and all simplicial spectra X, there is a natural
isomorphism
m4(X; P) 2 my(X; P)

and a natural long eract sequence

=1t (X;SP) =78 (X; P) — mp(X; P)

See [15]. Note that this implies that a morphism of simplicial spectra is a
P-equvalence if and only if it induces an isomorphism on 7l (—,P)forall P € P.

The long exact sequences of Proposition 3.8 can be spliced together to give
a spectral sequence

(3.1) p(X; $IP) = colimy, 7% (X; $PHI-Fp).
using the triangles

(3.2) (X P) ———— 7 (X; X0P)

~
~N
~N
~N
~N

p(X; X9P)

as the basis for an exact couple. Here and below the dotted arrow means a
morphism of degree —1. This is actually a very familiar spectral sequence in
disguise.

We may assume that X is Reedy cofibrant, and let sk, X denote the nth
skeleton of X as a simplicial spectrum. Then geometric realization makes
{|sk,X|} into a filtration of | X| and the standard spectral sequence of the geo-
metric realization of simplicial spectrum is gotten by splicing the together the
long exact sequences obtained by apply the functor [ZPT9P, —] to the cofibration
sequence

|skp_1X|— sk, X|—XP(X,/L,X).
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If we let
(PP, sk, X |V = Im{[ZPHIP, |sk, X || — [SPHIP, sk, 1 X ]}
then the first derived long exact sequence of this exact couple is

(3.3) [(2Ptap sk, 1 X || ———— [ZPHIP, sk, X ||V

A
~
~
- /

mp[L1P, X]
and we obtain the usual spectral seqeunces
(3.4) mp(X;8IP) = mp[SIP, X] = [EPTIP, | X]].

Thus the two spectral sequences have isomorphic E2-terms. More is true. The
next result says that the two exact couples obtained from the triangles of 3.2
and 3.3 are isomorphic; hence, we have isomorphic spectral sequences and we
can assert that geometric realization induces an isomorphism

colimy, 74 (X; TPHa=F p) Sy [wptap | X

3.9 Lemma. Geometric realization induces as isomorphism between the spiral
exact sequence

= (X5 BT P) — (X B9P) — my (X5 BIP) — -
and the derived exact sequence
o= [2PTP, sk, X ||V — [BPHP sk, X ||V —7, [RIP, X] — - -

Proof. The difficulty is to construct the map of exact sequences inducing an
isomorphism m,(X;X9P) = 71,[39P, X]. Once that is in place, the five lemma
and an induction argument show that we must have an isomorphism.

In [15] the spiral exact sequence is obtained by deriving another exact se-
quence. If K is a finite pointed simplicial set and X is a simplicial spectrum,
there is a spectrum Cg X characterized by the natural isomorphism

HomsS(Z N K, X) = HOms(Z, CKX)
for all spectra Z. In particular, we write
ZpX = CAp/aApX and CpX = CAp/AgX

where AF is the union of all but the 0th face. If X is Reedy fibrant, there is a
fibration sequence
2, X—Cp X—Zp, 1 X
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with maps induced by the cofibration sequence of simplicial sets
0
AP~ /AP~ d—»A”/A’SHA”/aAP.
Then the spiral exact sequence is the first derived sequence of the triangle

(3.5) [XIHIP Z, 1 X]——— — — - > [nettp, 7, x|

N

[X4TIP, C,X]

A key calculation is that [P, C, X| 2 N,[EP, X] where N,(—) is the pth group
in the normalized chain complex.
Geometric realization induces a function

Homg(Z,Cx X) =2 Homss(Z A K, X)—Homs(Z A | K|, X).

This does not induce a map out of the triangle of 3.5; however, after taking first
derived triangles, we get a morphism from the triangle of 3.2 to the triangle 3.3,
as required. O

3.10 Remark. At this point we can explain one of the reasons for using the
models P to define the resolution model category. Suppose X — Y is a weak
equivalence between cofibrant objects in the P-resolution model category. Then
for each of the spectra DE,, we have an isomorphism

fu: mp(X;X9DE,) — 7,(Y,%DE,).
However, if E.(—) is our chosen homology theory

TpEy X = colimy, m,(Eq)q X
= colim, 7, [E9DE,, X|
= colim, 7, (X; XIDE,).

We note that the spectral sequence of Equation 3.4 is natural in P; thus, taking
the colimit as this equation, we obtain a spectral sequence

(3.6) TpB, X = Epy | X].

This is, of course, the standard homology spectral sequence of a simplicial spec-
trum. In any case, if X — Y is an P-equivalence, then we get isomorphic F,
homology spectral sequences.

Finally, also note that Lemma 3.9 yields an isomorphism

(3.7) colimg, 7 (X YIDE,) = Im{E,|sk,X| — E,|sky,+1X]}.
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3.11 Remark. The category sS of simplicial spectra, and the more structured
simplicial spectra defined below have Postnikov sections. That is, for any X
in s§ we can produce a morphism of simplicial spectra X — P, X so that
7 (X; P) = 7t (P, X; P) for P € P and k < n, and, in addition, 7% (P, X; P) = 0
for k > n. One way to construct P, X is to define P, X to the colimit of simplicial
spectra P! X where POX to be a fibrant model for X and defining P! X to be
a fibrant model for the spectrum simplicial spectrum Y obtained as a push-out

ion LI, P A AF/0AF — o pi-ix
[y, LI P AA*/AG

where f runs over all morphisms

f:PAAFjoAR - PITTX

Y.

Note that since sSp is cofibrantly generated, this can be made natural in X. If
we are working with algebras in s Alg, for some simplicial operad T', we would
simply replace P A A JOAK by T(P A A¥/OAF), and so on.

It is worth remarking that one can now recover the universal coefficient theo-
rem of Adams-Atiyah ([1] §II1.13) from these constructions. If X is a spectrum,
we regard it as constant simplicial spectrum and choose a P-cofibrant replace-
ment Y for X. Then the spectral sequence of Equation 3.4, with P = S°, implies
that |Y'| ~ X. The universal coefficient spectral sequence is the Bousfield-Kan
spectral sequence of the cosimplicial spectrum F(Y, M) for an E-module spec-
trum M:

Exty (BoX, Mypy) = n°n_ F(Y,M) = 7_,_F(|Y|, M) = M**'X.

The Es-term is identified using Definition 3.2.4. Here the symbol M,;; means
the graded group with (Miit)n = M+

The P-resolution model category structure can be promoted to a model
category for simplicial algebras over a simplicial operad. Fix a simplicial operad
T and let sAlgy be the category of algebras over 7. This category has an
external simplicial structure; indeed, if K is a simplicial set and X € sAlgy,
one has

(3.8) (X®@K)y=][]" Xa
K,

The superscript T,, is indicates that the coproduct is taken in the category of
T, algebras. The simplicial set of maps is defined again by

[n] — Hom, Alg, (X A", Y)

We say that a morphism X — Y of simplicial T-algebras is an P-fibration or
P-equivalence if the underlying morphism of simplicial spectra is. Then we have
the P-resolution model category structure on s Algp:
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3.12 Theorem. With these definitions, the category s Algy becomes a sim-
plicial model category. Furthermore, for each X € sAlgr there is a natural
P-equivalence

PrX)—X

so that

1.) Pr(X) is cofibrant in the P-resolution model category structure on sST ;

2.) the underlying degeneracy diagram of Pr(X) is of the form T(Z) where Z
is free as a degeneracy diagram and each Z, is a wedge of elements of P.

Proof. The existence of the model category structure is the standard lifting
argument. In fact, since s Alg; has a functorial path object and the forgetful
functor to sS creates filtered colimits in s Alg,, we need only supply a P-fibrant
replacement functor for s Alg,.. However, every Reedy fibrant object in s Alg,
(as in the previous section) will be P-fibrant, and the s Alg; in its Reedy model
category structure is cofibrantly generated, so we can choose a Reedy fibrant
replacement functor. This will do the job.

The object Pr(X) is produced by taking an appropriate subdivision (for
example the big subdivision of [8] §XII.3, Example 3.4) of a cofibrant model for
X. O

Here is how one might use this model category structure. We fix an operad
C € O and a simplicial resolution T' — C of C' as in Theorem 2.1. If X is an
C-algebra, then X can be regarded as a constant object in s Alg, and, hence, we
have the resolution Pr(X) — X of the previous result. Then Pr(X) is Reedy
cofibrant in s Algy and, by Theorem 2.4.2, also Reedy cofibrant as a simplicial
spectrum. Thus we can use the spectral sequence of Equation 3.4 with P = S
to show that the natural map

[Pr(X)| — X

is a weak equivalence. But also, arguing as in Remark 3.10 we have that the
augmentation Pr(X) induces an isomorphism

m.E.Pr(X) = E,X.

Finally, if E.C(n) is projective as an E, module for all n, then E,Pr(X) is
a cofibrant E,T algebra. In fact, since each of the spectra P € P has the
property that F, X is projective as an E,-module, Theorems 2.1 and 3.12 imply
that there is an isomorphism of underlying degeneracy objects:

(3.9) E.(Pr(X)) = (E.T)(E.2).

The fact that E, Pr(X) is cofibrant can be read off of this equation.

As this discussion indicates, and as the reader may have already suspected,
we are not really interested in the P-equivalence classes of objects in simplicial
spectra or simplicial T-algebras, but certain types of F.-equivalences. There is
an appropriate model category, and it is a localization of the one supplied in
Theorem 3.12.
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3.13 Theorem. The category s Algr supports the structure of a cofibrantly
generated simplicial model category with

1.) a morphism f: X =Y is an E,-equivalence if
B (f) : M B X—m EY
18 an isomorphism;
2.) a morphism is an E.-cofibration if it is a P-cofibration; and

3.) a morphism is an E.-fibration if it has the right lifting property with re-
spect to all morphisms which are at once an E,-equivalence and an E,-
cofibration.

Since every P-equivalence in s Algy, is an E,-equivalence, this model cate-
gory structure can be produced using the localization technology of Bousfield,
et al. The are many minute details, but the technology is now available in [20].

4 André-Quillen cohomology

If A is a commutative algebra over a commutative ring k, M an A-module and
X — A a morphism of k-algebras, then the André-Quillen cohomology of X
with coefficients in M is the non-abelian right derived functors of the functor

X — Derp(X, M)

which assigns to X the A-module of k-derivations from X to M. This coho-
mology has natural generalization to algebras over operads and their modules;
indeed, much of the formalism of Quillen’s paper [30] goes through without
difficulty. This section outlines the details and explains the application to the
computation of the homotopy type of the space of maps between structured ring
spectra.

It should be said that for someone interested primarily in some A, operad —
that is, in producing associative ring spectra — then the André-Quillen cohomol-
ogy produced and discussed here is exactly that of the associative algebra case
in [30]. Tt is, except possibly in degree zero, a shift of Hochschild cohomology.

The first part of this section is written algebraically. We fix a commutative
ring k, possibly graded, and we consider k-modules (again possibly graded),
operads in k-modules, and so on. All tensor products will be over k. In our
applications k will be E, for some homotopy commutative ring spectrum FE.
Any omitted details can be found in [18].

Let C be an operad in k-modules and suppose A is a C' algebra. We define
what it means for M to be an A-module. Let ®(A, M) to be the graded k-
module with

QAM), =PAo - 9AMA® - ® A
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with M appearing once in each summand and then in the ¢th slot. Note that
®(A, M), has an obvious action of the symmetric group %,,. Define

@C’ RKkx, P A M n = EDC Qks, 1 A®(n71) ® M.

It is an exercise to show that there is a natural ismorphism of bifunctors
C(C(A),C(A,M)) = (C o C)(A,M))

where (+) o (+) is the composition of operads. The k-module M is an A-module
over C' (or simply an A-module) if there is a morphism of k-modules 7 :
C(A, M) — M which fits into a coequalizer diagram

C(C(A), C(A, M)) = (C o C)(A, M)) S C(A, M) " M
dy

where the maps dy and d; are induced by the operad multiplication of C, and
by n and the algebra structure on A respectively. Furthermore, the unit 1 — C
defines a morphism of R-modules M = 1(A4, M) — C(A, M) which is required
to be a section of 7.

We now come to derivations. If A is a commutative k-algebra, and M is an
A-module, we can can form a new commutative algebra over A called M x A,
which as an k-module is simply M & A, but with algebra multiplication

(z,a)(y,b) = (zb+ ay, ab).

The algebra M x A is a square-zero extension and an abelian object in the
category of algebras over A; all abelian group objects in this category have
this form. It also represents the functor that assigns to an algebra over A the
A-module of k-derivations from X to M:

DQI'R(X, M) = AlgComm /A(X7 M % A)

where we write Comm for the commutative algebra operad in K-modules.

These concepts easily generalize. If C' is an operad, A a C-algebra and M
an A-module, define a new C-algebra over A called M x A as follows: as an
k-module M x A is simply M @ A, but the C-algebra structure is defined by
noting that there is a natural decomposition

C(M @ A) = E(A, M) & C(A, M) & C(A)

where E(A, M) consists of those summands of C(M @ A) with more than one
M term. Since M is an A-module we get a composition

CMapA) —-CAM®CA -MaA

which defines the C-algebra structure on M x A. The algebra M x A is again a
square-zero extension and an abelian object in the category of algebras over A;
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again, all abelian objects have this form. This last observation makes it possible
to define the category of A-modules over C' to be the category of abelian C-
algebras over A.
Note that if we are in a graded setting and M is an A-module, then the
graded object Q'M with
(Q'M)y, = M4y

is also an A-module. Also, as obvious example of an A-module is A itself. We
will write
Ap(z_) =QAx A

by analogy with the exterior algebra that arises in the commutative case.

The object M x A in the category of C-algebras over A represents an abelian
group valued functor which we might as well call derivations; in formulas we
write

Dere (X, M) ' Alge 4 (X, M x A)

for all C-algebras over X. Such a derivation is determined by an k-module
homomorphism d : X — M which fits into an appropriate diagram which
reduces to the usual definition of derivation in the commutative or associative
algebra case. We invite the reader to fill in the details.

Cohomology in this context should be derived functors of derivations; this
immediately leads us to simplicial algebras. We also need simplicial operads.

Thus, we let C = C, be simplicial operad in k-modules and s Alg. the
category of simplicial algebras over C. This is a simplicial category in the
external simplicial structure; for example, if K is a simplicial set and X € s Alg,
then

(Ao K), =[] An

Ky

with the coproduct in C),-algebras. Also, among the morphisms of s Alg~ we
single out the free maps: a morphism X — Y is free if the underlying morphism
of degeneracy diagrams is isomorphic to a map of the form

X - XUucCZ)

where Z is a free degeneracy diagram on a free R-module.
The main theorem of [31] §I1.4 immediately implies the following:

4.1 Proposition. The s Alg. has the structure of a simplicial model category
with a morphism f: X —Y

1. a weak equivalence if m,f : m X — .Y is an isomorphism;

2. a fibration if the induced map Nf : NX — NY of normalized chain
complezes in k-modules is surjective in positive degrees;

8. a cofibration if it is a retract of a free map.
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If A € sAlg, then mpA is a moC-algebra. If M is a mgA-module (over the
operad moC') then M is an A,-module (over Cy,) for all n > 0. Then we can form
the simplicial module K(M,n) over A whose normalization NK(M,n) = M
concentrated in degree n. From this object we can form the simplicial C-algebra
Ka(M,n)=K(M,n) x A over A and, for X € s Alg- /A an algebra over A we
will define the André-Quillen cohomology of X with coefficients in M by the
formula

n def ~Y
(4.1) Dc(XaM) = [XvKA(Man)]sAlgc/A :'/TOmapsAlgc/A(XaKA(Mvn))'

We note immediately that there are natural isomorphisms
Dg_i(X7 M) = T3 INap g Algs /A(X7 KA(Ma n))

and that, in fact, the collection of spaces map, a1, /4 (X, Ka(M,n)), n > 0,
assemble into a spectrum homg a1y, /4 (X, Ka M) so that

DZ‘(Xv M) =T, hon’lsAlgC /A(Xv KAM)

As usual, this cohomology can be written down as the cohomology of a
chain complex. To be concrete about this, let us fix some notation. If C' is our
simplicial operad and Y is a simplicial C-algebra over a constant algebra A, and
if M is an A-module, as above, then we have abelian groups

Derc, (Yn, M) = (Algg, /A)(Yn, M x A).

Furthermore, if ¢ : [n] — [m] is a morphism in the ordinal number category, the
Y, is a C,,-algebra by restriction of structure along ¢* : C,,, — C}, and then

¢* Y —Y,
is a morphism of C,,,-algebras. Hence we get a map
Derg,, (Y, M)— Derc,, (Yo, M)
and, in fact, Derc(Y, M) becomes a cosimplicial abelian k-module. Then,
(4.2) D(X, M) = H"N Derc(Y, M)

where Y is some cofibrant model for X and N is the normalization functor
from cosimplicial k-modules to cochain complexes of k-modules. This concept
is important enough that we will write

(4.3) De(X, M) € Ho(C*k)

for the well-defined object in the derived category of cochain complexes defined
by N Derc(Y, M), with Y a cofibrant model for X.

In our applications we will have a homology theory E,.(-) and k = E,.. We
will also have a simplicial operad T" — that is, a simplicial object in the category
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O of simplicial operads — so C' = E,T and a typical C-algebra will be of the
form E,X where X € sAlgy. If E,E if flat over E,, this will imply that we
are actually working with operads, algebras and so forth in the category of
FE, E-comodules, rather than simply in the more basic category of F.-modules.
Under appropriate hypotheses — for example, if F satisfies the Adams condition
of Definition 3.1 — the FE,FE-comodule version of Proposition 4.2 is true, and
one can use this to define André-Quillen cohomology in the category of F,FE-
comodules.

To do this requires a little care, as we are forced to resolve not only algebras,
but also the modules; the short reason for this technical difficulty is that not
every chain complex of comodules is fibrant. The same problem arose in [23]
and our solution is not much different.

To get started, fix a simplicial operad C' in E,FE-comodules and an myC
algebra A, also all in E, E-comodules.

To ease notation, let us abbreviate the extended comodule functor by

I'(M)=E.E®g, M.

The functor I" also induces a right adjoint to the forgetful functor from A-
modules in FE, F-comodules to A-modules. Indeed, if M is an A-module, the
module structure on T'(A) is determined by the top split row of the diagram

(M) —=T(M)x A=—= A

L

[(M) —= D(M x A) == T'(A)

where the right square is a pull-back and where 14 is the comodule structure
map, which, by assumption, is a morphism of algebras. The functor I'(—) thus
becomes the functor of a triple on A-modules in E,E-comodules and for a
simplicial C-algebra Y in E,E comodules we can form the bicosimplicial F,-

module
Derc(Y,T*(M)) = {Derc, (Y,, [ (M))}.

We now write
(4.4) ]D)C/E*E(X, M) € Ho(C*E,E)

for the object in the derived category of comodules defined by taking Y to be
some cofibrant model for X and then taking the total complex of the double
normalization of the cosimplicial object Derc(Y,T*(M)). Then we have the
André-Quillen cohomology

(4.5) D¢/ p.g(X, M) = H"Dg, g/c(X, M).
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However, with luck, one can reduce the calculation of this more complicated
object to the first case. Here is the result we will use. The definitions should
make the following results plausible; the proof is in [18].

4.2 Proposition. Let C be a simplicial operad in E.E comodules and A a woC-
algebra in B, E-comodules. If M is a A-module in E,-modules, then the extended
comodule T(M) = E.E ®g, M is an A-module in E,E-comodules and there is
a natural isomorphism for simplicial C-algebras X over A in E,E-comodules

D¢y, p(X, E.E ®p, M) = D& (X, M).
A stronger assertion is true: there is an isomorphism
Deyp, p(X, E.E @p, M) = Do (X, M)

in the derived category of F.-modules.

With this technology at hand, we can now define a spectral sequence for
computing the homotopy groups of the space of maps between two structured
ring spectra. We fix a commutative S-algebra E; that is an algebra in spectra
over the commutative algebra operad in . Suppose further that E satisfies
the Adams condition of Definition 3.1. Let F be one of either the associative
algebra operad or the commutative algebra operad in ©.> Now suppose X is an
F-algebra in spectra; thus, X is either an associative S-algebra or a commutative
S-algebra. Then F,X is an algebra over the operad F.F in F,FE-comodules.

Now let ¢ : X — Y be a morphism of F-algebras is spectra. This amounts
to choosing a basepoint ¢ € mapAlgF(X, Y) for the space of F-algebra maps
from X to Y. The induced map

FE.¢o: E,X — E.Y

makes E.Y into an F,X module over the operad E,F, all in F, E-comodules.
Let T'— F be the resolution of operads supplied by Theorem 2.1. Also, for any
spectrum Y, let Yz denote the E-completion of Y, defined as the total space of

the cobar complex:
def

Y = ToT(E®* AY).
Since FE is a commutative S-algebra, Yg is an F-algebra if YV is an F-algebra.

4.3 Theorem. Let ¢ : X — Y be a morphism of F-algebras and let E be
a commutative S-algebra. Then there is a second quadrant spectral sequence
abutting to

Ti—s(mappy, (X, YE), ¢)
with E? term
Ey° = Homg, r/p, p(E. X, E.Y)

and
Ey' =Dy /g (B X, QEY) >0

5The reader sensitive to generalization will note that this restriction is only aesthetics. A
general operad in O will do.
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Of course, the Eg’o term is either the associative or commutative algebra
maps (in E,E-comodules) from F. X to E.Y.

This is a Bousfield-Kan spectral sequence, as we will see in the next para-
graph. The standard references are [8] and [7]. The latter work, for example,
implies the following result:

4.4 Corollary. There are succesively defined obstructions to realizing a map
f € Homg, r/p, g(E.X, E.Y) in the groups

DSE—L_;/E*E(E*Xv VE.Y) s> 1.

In particular, if these groups are all zero, then the Hurewicz map
(4.6) Wo(mapAlgF (X,Yg)) —» Hompg, r(E. X, E.Y)
is surjective. If, in addition, the groups
ng*T/E*E(E*X, Q°E.Y)=0
for s > 1, the Hurewicz map of Equation 4.6 is a bijection.

The spectral sequence of Theorem 4.3 is constructed as follows. We may
regard X as a constant simplicial T-algebra and take the simplicial resolution
in T-algebras Pr(X) — X guaranteed by Theorem 3.12. In addition, since E
is a commutative S-algebra, the cobar complex

Y - E*AY = {ETTAY}
is a cosimplicial F-algebra. We then obtain a cosimplicial space

mapg g, (Pr(X),E*NY) = {rnapAlgTS (Pr(X)s,, ESTL A Y}
= {mapAlg]_-(f ®Ts PT(X)S, ES+1 A Y)}S

and the map ¢ : X — Y supplies this with the basepoint. The Bousfield-Kan
spectral sequence now reads

mimemapy, (Pr(X), E* AY) = m_TOT mapyy, (Pr(X),Y)".

One uses standard adjunction arguments, Theorem 1.6, Theorem 2.1, and The-
orem 2.2 to show

Tor Algy (Pr(X), E* NY) 2 Alg (|Pr(X)|, TOT(E® AY)) ~ Algz F(X, YE).

We then must identify the Fs-term. Let’s abbreviate E@rDAY as E@Y . Since
the cosimplicial space in question is the diagonal of the bicosimplicial space

{map,y,, (Pr(X), BOY)}
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the E5 term can be computed as the cohomology of the total complex of the
double normalization of

{mmap, (Pr(X),, BOY)}.

If we let YS' denote the spectrum of maps from the space S? to the spectrum
Y, then V¥ " has a natural structure of an F. -algebra. Thus, because of Theorem
3.12, the choice of the spectra used to build P-resolutions (Definition 3.2) and
the conditions on the operads Ty from Theorem 2.1, we have, for ¢t > 0:

T mapy, (Pr(X), BO(Y)) = mmapy,, (T,(Z,), B@(Y))
= m mapg(Z,, B9(Y))
= Homp, p(E. Z,, E,(E9 (Y)"))

= HomE*Tp/E*E(E*Tp(E*Zp)7 AE*E(Q)(Y)(-Tt))
=Derp, 1,5, 58(ETy(E.Z,), Q'E.EDY).

In short, we obtain exactly the complex Dg, /g, g(E: X, Q'E.Y) used to define
André-Quillen cohomology. See Equation 4.4.

As an amusing reduction of this theory, one can consider the case of the
unit operad 1 in place of the commutative or associative algebra operad. An
algebra over 1 is simply a spectrum, and an F,1-algebra is an E, E-comodule.
The formalism carries over and the spectral sequence of Theorem 4.3 becomes
the the Adams-Novikov spectral sequence

(4.7) Ext} p(E.X, V'E.Y) = m_,mapg(X,Yg) = [2'°X, Vg|

and the obstructions of Corollary 4.4 to realizing an F, E-comodule map E, X —
E.Y lie in

(4.8) Exti H(E. X, Q°BY) s>1

If Y is an F-module, then the cobar complex E®* AY has a contraction;
in particular, ¥ = Yg. We would expect a corresponding simplification of
the spectral sequence of Theorem 4.3. Indeed, the André-Quillen cohomology
groups simplify: we need only use the derived functors of derivations in F,-
modules. We can also weaken the assumption that E be a commutative S-
algebra. The result then reads:

4.5 Theorem. Suppose that E is a homotopy commutative ring spectrum, sat-
isfying the Adams condition of Definition 3.1 and let ¢ : X — Y be a morphism
of F-algebras in spectra. Then there is a second quadrant spectral sequence
abutting to

Tt—s (mapAlg}_ (Xa Y)a ¢)
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with By term
EY° = Homp, 7(F.X,Y.)

and
Ey' =Dy #+(E.X,QY.)  t>0.

Here the ES -term is the set of E,F-algebra morphisms from E,X to Y,.
The proof is identical to the proof of Theorem 4.3; the relevant cosimplicial
space is
map,, (Pr(X),Y) = {mapy,, (Pr(X)Y)}".

Because we have a cosimplicial space, we again have obstructions to realizing
maps. In fact, there are succesively defined obstructions in

(4.9) Dy p(E.X,Q°Y.) = DL p(BX, Q°EY), n>1

to the realization of a map in Homg, 7/ g p(E.X, E.Y).

5 The moduli space of realizations

We now fix a homotopy commutative ring spectrum F satisfying the Adams
condition of Definition 3.1. Let F be an operad in O and suppose that A is an
E.F-algebra in E,F-comodules. The purpose of this section is to discuss the
homotopy type of the space 7 M(A) of realizations of A in Algr. In practice, of
course, F is either the associative or commutative monoid operad and, hence, A
is an associative or commutative algebra in E, E-comodules. The method here
is exactly that of [6].

By definition, 7 M(A) is the nerve (or classifying space) of the category £(A)
with objects the F-algebra spectra X with F, X = A as F,F-algebras and mor-
phisms are E,-isomorphisms.® As in section 1, the Dwyer-Kan decomposition
of TM(A) supplies a weak equivalence

TM(A) ~ [ BAut(X)

(X]

where X ranges over the F,-equivalence classes of realizations of A and Aut(X)
is the derived space of self-equivalences of X in the F.-local model category
structure on Alg . It is worth emphasizing that this result uses the identification

(5.1) BAut(X) ~ M(X)

where M(X) is the nerve of the category with objects Y € Algr so that there
a chain of E,-isomorphisms in Algr between Y and X. The morphisms are
E,-isomorphisms in Algr.

The initial question, of course, is whether 7 M(A) is non-empty.

We now decompose 7 M (A). As always, we will let T — F be a simplicial
resolution of the sort supplied by Theorem 2.1.

6The isomorphism E.X 2 A is not part of the data.
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5.1 Definition. Let X € s Alg; be a simplicial T-algebra. We say that X is a
potential n-stage for the F,F-algebra A if

1. mgE,X is isomorphic to A as an E,F-algebra in E, E-comodules;
2. m;E,X=0for1<i<n+1;and
3. For all P € P, the groups 71'5 (X;P)=0 for i >n.

The partial moduli space TM,,(A) is defined to be the moduli space of all
simplicial T-algebras which are potential n-stages for A. The weak equivalences
are the simplicial F.-equivalences of Section 4.

It follows from the spiral exact sequence of Proposition 3.8 that a potential
n-stage X for A has

A 1=0;
(5.2) mE. X2 QA i=n+2;
0 i#0,n+2.

Furthermore, by the spiral exact sequence or, more exactly, the isomorphism 3.7,
the A-module structure on 7,1 F. X is the evident shifted A-module structure.
The same calculation shows that for the natural homotopy groups

VA 0<i<n;

ﬂ-EE*X def colimﬂE(X, Y*DE,) = { 0 i>n

Again, the A-module structure on WEE*X is the evident shifted module struc-
ture.

Definition 5.1 makes sense for n = oo: a potential co-stage is simply an
object X € s Algy so that moE. X = A and m; E, X = 0for ¢ > 0. Let T M. (4)
be the resulting moduli space.

Theorem 2.2 and the spectral sequence of 3.4 imply that geometric realiza-
tion defines a map

| —]: T Mo (A)—T M(A)

and the Postnikov stage construction of Remark 3.11 implies that there are
maps

TM,(A)—T M, (A); 0<m<n<oo.
Here is the first part of the decomposition result.

5.2 Proposition. The map induced by geometric realization
| —|: T Mo (A)—T M(A)
s a weak equivalence. Furthermore the map

TMo(A)— ho<lim TM,(A)

s a weak equivalence.
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Proof. The first assertion is formal. Compare Theorem 9.3 of [6]. The sec-
ond assertion is not formal; however, it follows from the main theorem of [12].
Compare Theorem 9.4 of [6]. O

The next step is to investigate the tower {7M,,(A)}. To do this we will
identify the bottom space as a K(G,1), then tell how to pass from the (n —
1)st stage to the nth stage using André-Quillen cohomology. We begin by
constructing the 0-stage; in particular, we show 7 Mg(A) # ¢.

5.3 Definition. A simplicial T-algebras is said to be of type By if
1.) mpE.X = A as an E,F-algebra in E,E comodules; and
2.) for Y € s Algy, the natural map
Y, X]s atg, —Homp, /5, (7o ELY, A)

is an isomorphism. Here the homotopy classes of maps are in the E,-local
homotopy category of s Alg;.

We write Ba for any of the (essentially unique) objects of type B4 and, if we
need to, will assume B4 is F,-local without saying so.

Simplicial T-algebras of type By exist. This can be seen by a generators
and relations argument or by some generalized Brown representability theorem.
See [19].

5.4 Remark. We have that for any simplicial T-algebra X of type B4 that

Hom E.PA) i=0;
7TE(X;P):{O s i >0,

Thus a simplicial spectrum of type B4 is potential O-stage for A. Furthermore,
the spiral exact sequence implies

A =0
mEX =2 QA =2
0 1#0,2.

The following result says, among other things, that there is a unique potential
0-stage of A up to E,-equivalence and that it is of type By.

5.5 Proposition. Let Aut(A) denote the discrete group of automorphisms of
the E.F-algebra A in E,E-comodules. Then there is a natural weak equivalence

TMo(A) = B Aut(A).

Proof. Fix a choice B4 of an E,-local space of type B4. Let X be a potential
0-stage for A. Then a choice of isomorphism 7y F, X = A defines a morphism
in s Algp

X—>BA
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which defines an isomorphism on 7, F(—) by the spiral exact sequence. Thus
T Mq(A) is connected and, by the Dwyer-Kan analysis (5.1)

TMO(A) =B Aut(BA).
But it is an easy calculation that

Aut(A) n=0;

7 Aut(Ba) & { 0 n£0.

O

To pass between the various stages of the tower, we need to know that
André-Quillen cohomology is representable in the homotopy category of s Alg,.
Specifically, we have the following ideas.

5.6 Definition. Let A be an E,F-algebra in E, E-comodules and let M be an
A-module, also in E,E-comodules. We say that a map X — Y in sAlgy is of
type Ba(M,n), n > 1if

1.) X is of type B4 and the induced map
B X — mEY
is an isomorphism for i < n;
2) m,E.Y =2 M as a mpE.Y =2 A module; and
3) 7 (Y;P)=0ifi>n.

We may abuse notation and refer to the simplicial T-algebra Y as being
of type Ba(M,n). Again, it is possible to construct such objects by a gener-
ators and relations argument, or by Brown representability using the evident
homotopy characterization supplied by Proposition 5.7 below.

We would like to give a homotopical interpretation of the simplicial 7T-
algebras of type B4 (M, n); in fact, such objects will — in some sense — represent
the functor

Z = Dy /g, g(EuZ, M).

The exact result is below in Proposition 5.7, but to get there requires some
preliminaries.

If X — Y is of type Ba(M,n), we may assume that X is E,-fibrant and
that the map from X to Y is a cofibration to an FE,-fibrant object — and we
may make this assumption without repeating it and then we will write

BAHBA(Ma n)

for such a map. If we suppose n > 2, then the spiral exact sequence implies
that

M T =n;
(5.3) mEBaA(M,n) 2 mE.Bsx QM i=n+2;

0 i #n,n+2.
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In particular, we get a natural isomorphism mgFE.Ba(M,n) =2 A and then Re-
mark 5.3 supplies a map B4 (M, n) — By so that the composite X — Y — By
is an E,-equivalence. In this way we will regard B4(M,n) as an object over
Ba.

Because of the isomorphism of Equation 5.3, the simplicial F,T-algebra
E.Bs(M,n) is not weakly equivalent to K4(M,n) = K(M,n) x A in the cate-
gory of simplicial E,T-algebras over F,FE-comodules. However, there is a nat-
ural map of E,T algebras

(5.4) €: E.Ba(M,n)—Ks(M,n)

over the constant simplicial E,T-algebra A. This we now produce.
Let C be the push-out in s Algy_ g/ g, ¢ of the two-source

E.Ba(M,n) «— E.By—moE.,E.Bs = A.

Then Equation 5.3 implies that the (n + 1)st Postnikov section P,,11C of C' in
sAlgg, g/, has the property that

A i=0;
7TiPn+1C§ M i:n;
0 i#0,n.

This alone is not enough to identify the homotopy type of P, 1C. However the
map

A= nmyE.By — Pn+1C

is a section of the map P,11C — moP,11C = A; hence P,,;1C is canonically
weakly equivalent to K 4(M,n), and the composition

E.Bx(M,n) — C — P,11C
is a model for the morphism € of Equation 5.4.

5.7 Proposition. Let By — Ba(M,n) be of type Ba(M,n) and suppose n >
2. Let X € sAlgy and suppose a morphism of F-algebras in E.E-comodules
moE. X — A is represented by a map f : X — Ba. Then the morphism of
simplicial E,T-algebras

€: E.Bs(M,N) — Kus(M,n)
induces a natural weak equivalence
map, atg, /15, (X, Ba(M, 1)) > map, arg, ., /a(B X, Ka(M, ).
In particular

T map, A, /5, (X, Ba(M,n)) = DL o (B.X, M).
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Proof. We have a natural map induced by €. Since both source and target take
homotopy colimits to homotopy limits, it is sufficient to check the result for
objects of the form X = T(P ® K) where P € P and K is a simplicial set.
Inducting over the skeleta of K, we find it is sufficient to check the result for
objects of the form T'(P ® JA™) equipped with some choice of map

E.T(P® 0A™) — myE,T(P ® A") = E, F(E,P) — A.

But the objects of type B4(M,n) are built exactly so the result holds in this
case. For more details see Proposition 8.7 of [6]. O

To shorten notation, let us write
n def
H" (A, M) = mapsAlgE*T/E*E/A(E*X, K4 (M,n)).

Let Aut(A, M) of be the group of automorphisms of the pair (A, M). Then
Aut(A, M) acts in a natural way on the space H" (A4, M); let H"(A, M) denote
the Borel construction. The space H"™(A, M) has a basepoint given by

0e 7T07{’1(‘471\4) = T];“*T/E*E(AvM)'

There is a choice of representative for 0 which is invariant under the action of
Aut(A, M); therefore we get an induced map

B Aut(A, M) — H" (A, M).
5.8 Theorem. For alln > 1 there is a homotopy pull-back diagram
TM,(A) B Aut(A, M)

| |

T M1 (A) —= HM2(4, 07 A).

To interpret this result, let ¥ € TM,,_1(A) be a basepoint — that is, a
potential (n — 1)st stage of of A. Then the homotopy fiber of 7M,,(A) —
TM;,—1(A) is non-empty if and only if Y is weakly equivalent to P,_1X for
some potential nth stage of A. This, in turn, will occur if the image of Y in
ToH"2(A,Q"A) is the zero element. Furthermore, if it is the zero element,
then homotopy fiber at Y is weakly equivalent to H"+1(A, Q" A). Therefore, by
trying to lift the basepoint of 7My(A) = B Aut(A) up the tower, we obtain
the following corollary.

5.9 Corollary. There are successively defined obstructions, well defined up to
the action of Aut(A, M),

0n € Dyl g p(A,Q"4),  n>1

to realizing the E,F-algebra A by an F-algebra X. Obstructions to uniqueness
lie in

Dgf%/E*E(A, QrA).
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Theorem 5.8 is proved exactly in the same manner as the main theorem of
[6]. If one is interested only in the obstructions to realization, one can proceed
as follows. Let Y be a potential (n — 1)st stage for A. We’d like to construct
a potential nth stage X so that P,,_1 X ~ Y. We may assume that Y is a
cofibrant simplicial T-algebra. By a Postnikov section argument, we see that it
is necessary and sufficient to produce a map of simplicial T-algebras over B4

Y—Bs(Q"A,n+1)

which induces an isomorphism on wi 41+ Because the space Ba(2"A,n + 1)
represents André-Quillen cohomology, this is equivalent to producing a map of
simplicial F,T-algebras over A

E.Y—Ks(Q"A,n+1)

which (by calculating with the spiral exact sequence) is a weak equivalence.
Since, as a simplicial E,T-algebra, E.Y is a two-stage Postnikov tower, it is
determined up to weak equivalence by a morphism in s Algg r over A

A~ PEY—Ks(Q"A,n+2).
The class of this map in

moH" (A, Q" A) = DL (A, Q" A)/ Aut(4,97A)
is the obstruction. The Borel construction is necessary as we have not fixed our
various isomorphisms to A and Q" A.

The obstructions to uniqueness can found in Equation 4.9.

6 Computing with £, operads.

If Comm is the commutative monoid operad, then Theorem 2.1 supplies an
augmented simplicial operad T' — Comm so that the augmented simplicial
operad E,T — FE, Comm is an algebraic F,, operad in a sense to be defined
shortly. Since it is the simplicial operad T and the methods of the previous
section that we will use to attempt to impose F., structures on spectra, we
need to be able to compute the André-Quillen cohomology functor Dy, 5. The
purpose of this section is to reduce that computation, at least in some cases, to
the calculation of ordinary André-Quillen homology or cohomology. The main
result is the two spectral sequences supplied by the Propositions 6.4 and 6.5
below. Note that E, Comm is the commutative algebra operad in E, mod-
ules; hence ordinary André-Quillen cohomology is cohomology over the operad
FE, Comm.

We will first say what we mean by an F, operad. If k is a commutative ring,
we will write Comm for the commutative monoid operad in k-modules—rather
than, for example, k[Comm].
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6.1 Definition. For any commutative ring k (possibly graded) an E.-operad
£ is a simplicial operad in k-modules equipped with a weak equivalence & —
Comm and so that for each ¢ > 0, £(q) is a cofibrant (i.e., level-wise projective)
simplicial k[X,] module.

There is a canonical such operad—namely a cofibrant model for Comm in
the category of simplicial k-operads —but we don’t need that much structure
in this discussion.

If V. is a cofibrant simplicial k-module, the shuffle chain equivalence of nor-
malized chain complexes

NV)®--®@N({V) - NV&---aV)

n n

is ¥,-equivariant; thus if C is any simplicial k-module operad, the normalized
object NC' = {NC(k)}k>0 is an operad of k-chain complexes. In particular, if £
is an F, operad in the sense of Definition 6.1, then N& is an F,, operad in the
category of chain complexes over k. More is true. If V' is a simplicial k-module,
and C is a simplicial operad, then there is a natural map of chain complexes

(6.1) NC(q) ®s, NV®? — N(C(q) ®ks, VE)

and if C(q) is cofibrant as a k¥,-module and V' is cofibrant as a k-module, this
is a quasi-isomorphism. In shorthand,

(6.2) NC(NV) — NC(V)

is a quasi-isomorphism of NC algebras. Furthermore, if A is any simplicial
C-algebra, NA is an NC algebra via

NC(NA) — NC(A) — NA.

From these considerations, and from [28], it immediately follows that if k is
an algebra over a field F of characteristic p > 0, and & is a simplicial E, operad,
then the homotopy of any simplicial £-algebra is an “unstable” algebra over the
Dyer-Lashof algebra. That is, if A € s Alge, then 7. A is a graded commutative
algebra equipped with operations

Qi F TR A = T A, 1> 0,p=2
or ‘
ﬂte : 7TnA - 7Tn+21'(p—1)—eA i > 07 e=0, ]-7p > 2
subject to the Adem and Cartan formulas of [11], §I.1. Unstable in this context
means, at p = 2,
ir v 0 i<deg(x)
Q'(z) = { 2?2 i =deg(z)

and at p > 2
crir [0 2i—e<deg(x)
ﬁQ(m)_{xp 2i = deg(z) and € = 0.
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This condition arises because we are dealing with a normalized object, not an
arbitrary algebra over an F., operad in chain complexes.

Also if k is not the prime field F,, these operations are not k-linear; if
¢ : k — k is the Frobenius, a € k and = € w, A, then

(6.3) 3°Q' (azx) = ¢(a) Q" (2).

There is an obvious category UR of unstable algebras over the Dyer-Lashof
algebra. The forgetful functor YR — nMj to graded k-modules has a left
adjoint Sg. It follows from the quasi-isomorphisms of 6.1 and 6.2 and the
calculations of [28] that if £ is an F, operad and V' € sMy, then the natural
map

(6.4) Sr(mV) = m.E(V)

is an isomorphism in R provided that 7,V is a graded projective k-module.
Note that this isomorphism does not depend on &: if V' a cofibrant simplicial
k-module, 7.E(V) is independent of the F., operad £ and we have:

6.2 Proposition. Let f : € — &' be a morphism of E., operads over an F
algebra k, where F is a field of positive characteristic. Then the restriction of
structure functor and its left adjoint induce a Quillen equivalence

E @¢ (1) = f*:s5Alge == s Algg, : fu.

This result is true over any ground ring k, although in general a less com-
putational proof is required. Furthermore, any two E..-operads are connected
by a chain of such weak equivalences.

The algebra Sk (W) has a simple description, at least when W is a graded
projective k-module. See [11] §1.1. The operations 3Q° can be assembled into
an algebra R over F, using the Adem relations (see [11], §1.2). This is the
Dyer-Lashof algebra. If W € nMj, is a graded k-module, let

(6.5) R(W) =R &, W/U
where U is the sub-R-module generated by elements of the form

Q' @z, i<deg(r) (p=2)
BQ @z, 2 —e<deg(z) p>2.

Then, if W is a graded projective k-module,
(6.6) Sr(W) = S(R(W))/1

where S is the graded symmetric algebra functor over k and I is the ideal
generated by the elements

Q'(x) —a® deg(x) =i, p=2
Q'(z) —xP deg(x) =2i, p>2
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In particular Sg (W) is a free graded commutative k-algebra.
If T' € UR then I is, among other things, a graded commutative algebra and,
as such, we can form its André-Quillen homology D,I" as a graded commutative

algebra:
def

D,I' = mlLp )
where L/, is the cotangent complex as a graded commutative algebra. As
usual (cf. [29],[17]), the André-Quillen homology inherits structure from the
Dyer-Lashof operations. We next spell out exactly what this structure is.
Let U be the category of non-negatively-graded modules over the Dyer-
Lashof algebras R. These are graded k-modules and R acts with the Frobenius
twist as in Equation 6.3, and unstable means that

Qz(x) =0 if i < deg(x) (p=2)
B8R (x) =0 if 2i—e<deg(x)or 2i =deg(z) (p>2)

If T' € UR then U(T) is the category of objects M which are at once in U, and
graded I'-modules subject to the compatibility condition that the multiplication
map

'y M — M

is a morphism in U.

Such structures arise naturally as follows: If M € U(T), let Derg (T, M)
be the module of commutative k-algebra derivations that commute with the
elements of R. The following is proved with a minor variation of the (entirely
standard) techniques of [17] §1.

6.3 Lemma. Let I' € UR. The graded module Qr ;. of commutative algebra
derivations is naturally an object in U(T') and there is a natural isomorphism

DerR (F, M) = HomM(F) (QF/k7 M)

The functor which assigns to an algebra I' € YR the module of derivations
Derg (I', M) has non-abelian right derived functors. Choose a cofibrant X model
for I' € UR regarded as a constant object in sid/R. Then these derived functors
are a kind of André-Quillen cohomology:

(6.7) D% (T, M) = " Derg (X, M).

This cohomology can be dissected. We may assume X, = Sr(V,) for some
graded, projective k-module V;; hence, as a simplicial graded commutative al-
gebra, X — I is still a cofibrant model for I". Thus

(6.8) Lr/r ~T ®@x Qx/k

acquires, by Lemma 6.3, the structure of a cofibrant simplicial st/(T") module.
This implies that the ordinary André-Quillen homology

(6.9) D.TI' = 7. LQr
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is a graded object in U(T"), and this structure is independent of the choice of X.
This noted, it is not surprising that the natural isomorphism of Lemma 6.3

yields a composite functor spectral sequence:

6.4 Proposition. Let I' € UR. Then there is a spectral sequence

(Dy(T), M) = DR™(T, M).

Extf{ )

This is important because of the following result. Let k be an algebra over
a field of positive characteristic, and £ a simplicial E, operad over k. If A is a
simplicial £ algebra and M is a mpA module (over the operad 7o = Comm),
then M is an object in U (m.A).

6.5 Proposition. Let £ be an Eo, operad over an F-algebra k, where F is a
field of characteristic p > 0. Let A € s Alge. Then there is a spectral sequence

DY, (m. A, M)? = DETI(A, M).

Proof. Here is an outline of the proof. We may assume A is cofibrant. Let
PEA € s(sAT) be a simplicial resolution of A by £ algebras of the form &(W)
where W is a cofibrant simplicial k-module with the property that w,W is a
projective k-module. Here resolution means that

W*W*PfA ~r.A

via the augmentation. It is possible to construct such by a Stover resolution
argument. Compare section 3. Note that this and Equation 6.4 imply that

W*PfA—nT*A

is a cofibrant model for 7, A as a simplicial object in UR.
Taking the geometric realization, which is possible because s Alge is a sim-
plicial model category, we obtain a weak equivalence

|PEA| — A
and hence a spectral sequence
T DE(PE(A), M) = DP™9(|Pf A|, M) = DP™9(A, M).
The last isomorphism follows because |Pf A| is cofibrant. The claim is that
DE(E(W), M) 2 Derg (Sg (maV), M),
This is easily verified, completing the proof. O

6.6 Remark. If £ is an algebra over a field of characteristic 0 and £ is an
FE.-operad for k-modules, then the weak equivalence of simplicial operads e :
£ — Comm induces a Quillen equivalence

€ sAlge —= sAlgcomm €+

Furthermore, André-Quillen cohomology over £ reduces to André-Quillen coho-
mology for commutative k-algebras.
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In our applications, we will encounter simplicial algebras of the form F,X
where X is some simplicial algebra over some simplicial operad. In this case, the
ground ring will be k = F, and very rarely will this be an algebra over a field
of characteristic p. Therefore, we close this section with two results intended to
reduce calculations to the case considered above.

The first is this. Suppose m C k is an ideal with the property that k/m is an
algebra over a field of chacteristic p. Then if £ is an F,, operad over k in the
sense of Definition 6.1, then k/m®y, £ is an E, operad over k/m. Furthermore,
if A is a simplicial £ algebra, then k/m ®j A is a simplicial k/m ®j £ algebra.
If M is module over

Wo(k/m ®k A) = k/m ®k 7TOA

then M is a module over mgA and we’d like to use these facts to compute
D:(A,M). If X is a cofibrant £ algebra, then X is cofibrant as simplicial k
module; hence if X — A is a weak equivalence of £ algebras with X cofibrant,
then k/m ®;, X is a model for the derived tensor product k/m &% A.

6.7 Proposition. Let A be a simplicial £ algebra over an E., operad over k
and let M be a k/m ®j, moA module. Then there is a natural isomorphism

D3 (A, M) = Dy o e (k/m @ A, M).
If m A is flat over k, then
T (k/m @ A) 2 k/m @y T, A.

Now suppose M is simply a module over mgA and suppose that M is flat as
a k-module. Then we can filter the module M by powers of the ideal m C k to
get a spectral sequence:

6.8 Proposition. There is a spectral sequence

EPt = Dy g (k/m @ A, mTM m M) — lim DE(A, M /m? M),

If M is m-complete in the sense that M = lim, M/mIM and there is an r so
that for all (p,q) we have EP1 = ED:1, then

lim D (A, M/m?M) = DE(A, M).

7 The Lubin-Tate Theories

In the section we apply the technology developed in the previous sections to
show that the techniques used by Haynes Miller and the second author (cf.
[34]) to show that the algebraic theory of deformations of height n formal group
laws actually lifts to F..-ring spectra.

The Lubin-Tate theory [25] of deformations of finite height formal group
laws works over an arbitrary perfect field of characteristic p. However, we will
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specialize to algebraic extensions of the prime field F, to keep the language
simple.

Fix a such a field k and a formal group law I" over k. A deformation of T'
to a complete local ring A (with maximal ideal m) is a pair (G, i) where G is a
formal group law over A, i : k — A/m is a morphism of fields and one requires
i*I' = 7*G, where 7 : A — A/m is the quotient map. Two such deformations
(G,4) and (H,j) are x-isomorphic if there is an isomorphism f : G — H of
formal group laws which reduces to the identity modulo m. Write Defr(A) for
the set of *-isomorphism classes of deformations of I" over A.

A common abuse of notation is to write G for the deformation (G, i); 7 is to
be understood from the context.

Now suppose the height of I" is finite. Then the theorem of Lubin and Tate
[25] says that the functor A — Defr(A) is representable. Indeed let

(7.1) Al k) = W(k)[[u, -+, un—]]

where W (k) denotes the Witt vectors on k and n is the height of I". This is
a complete local ring with maximal ideal m = (p,u1, -+ ,u,—1) and there is a
canonical isomorphism ¢ : k = A(T", k)/m. Then Lubin and Tate prove there is
a deformation (G, q) of T over A(T', k) so that the natural map

(7.2) Hom,(A(T, k), A) — Defr(A)

sending a continuous map f : A(T',k) — A to (f.G, fq) (where f is the map
on residue fields induced by f) is an isomorphism. Continuous maps here are
very simple: they are the local maps; that is, we need only require that f(m)
be contained in the maximal ideal of A. Furthermore, if two deformations are
*-isomorphic, then the x-isomorphism between them is unique.

We’d like to now turn the assignment (T, k) — A(T, k) into a functor. For
this we introduce the category FGL,, of height n formal group laws over fields
which are algebraic extensions of F,,. The objects are pairs (I', k) where I' is of
height n. A morphism

(f,73) : (T1, k1) — (D2, k2)

is a homomorphism of fields j : k; — ko and an isomorphism of formal group
laws f : j*I'y — I'y. This is the opposite of the category considered by Rezk in
[34]. We make this choice so we get a covariant functor. As a result, some of
our results below also have an opposite flavor — nonetheless, these are the same
results.

Let (f,7) be such a morphism and let G; and Gz be the fixed universal
deformations over A(I'y, k) and A(Tg, k) respectively. If f € A(Tg, ko)[[z]] is
any lift of f € ka[[z]], then we can define a formal group law H over A(I'3, k2)
by requiring that f : H — Gy is an isomorphism. Then the pair (H,j) is a
deformation of T'y, hence we get a homomorphism A(T'1, k1) — A(Ta, ko) clas-
sifying the x-isomorphism class of H — which, one easily checks, is independent
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of the lift f. Thus if Rings. is the category of complete local rings and local
homomorphims, we get a functor

A(-,-) : FGL,, — Rings..

In particular, note that any morphism in FGL,, from a pair (T',k) to itself is
an isomorphism. Thus, these endomorphisms form the “big” Morava stabilizer
group of the formal group law. It contains the usual Morava stabilizer group as
the subgroup of elements of the form (f,idy). The formal group law and hence
also its automorphism group is determined up to isomorphism by the height of
I if k is separably closed.

Next we put in the gradings. This requires a paragraph of introduction.
For any commutative ring R, the morphism R[[z]] — R of rings sending x to
0 makes R into a R][[z]]-module. Let Derg(R[[z]], R) denote the R-module of
continuous R-derivations; that is, continuous R-module homomorphisms

0:R[[z]] — R

so that
I(f(x)g(x)) = 0(f(x))g(0) + f(0)d(g(x)).
If 0 is any derivation, write d(x) = u; then, if f(z) = 3 a;2?,

A(f(x)) = a10(x) = aru.

Thus 0 is determined by u, and we write @ = 0,,. We then have that the module
Derg(R[[z]], R) is a free R-module of rank one, generated by any derivation 9,
so that u is a unit in R. In the language of schemes, 0, is a generator for the
tangent space at 0 of the formal scheme AL over Spec(R).

Now consider pairs (F,u) where F' is a formal group law over R and u is a
unit in R. Thus F' defines a smooth one dimensional commutative formal group
scheme over Spec(R) and 0, is a chosen generator for the tangent space at 0.

A morphism of pairs
f:(F,u) — (G,v)

is an isomorphism of formal group laws f : F' — G so that
u= f"(0)v.

Note that if f(x) € R[[z]] is a homomorphism of formal group laws from F to
G, and 0 is a derivation at 0, then (f*0)(z) = f/(0)0(x). In the context of
deformations, we may require that f be a x-isomorphism.

This suggests the following definition: let I be a formal group law of height
n over a field k which is an algebraic extension of F, and let A be a complete
local ring. Define Defr(A). to be equivalence classes of pairs ((G,4),u) where
(G,1) is a deformation of T" to A and w is a unit in A. The equivalence relation
is given by *-isomorphisms transforming the unit as in the last paragraph. We
now have that there is a natural isomorphism

Hom,(A(T, k)[u™!], A) = Defr(A),.
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We impose a grading by giving an action of the multiplicative group scheme
G, on the scheme Defr(-), (on the right) and thus on A(T,k)[u*!] (on the
left): if v € A* is a unit and (G, u) represents an equivalence class in Defr(A).
define an new element in Defr(A). by (G,v ! u). In the induced grading on
A(T, k)[u*!], one has A(T, k) in degree 0 and u in degree —2.

This grading is essentially forced by topological considerations. See the
remarks before Theorem 20 of [39] for an explanation.

We now collect a sequence of results, mostly from Rezk’s paper [34], to
develop the input to our machine.

7.1 Proposition. For all pairs (T, k) € FGL,,, the universal deformation over
A(T, k)[u*!] is a Landweber exact formal group law. Furthermore, the resulting
homology theory E(T', k), is of Adams-type.

Proof. See Propositions 6.5 and 15.3 of [34]. O
We will write E(T', k) for the representing spectrum of this homology theory.

7.2 Remark. The importance of these homology theories — and of the whole
moduli problem we are discussing here — was first recognized by Morava. Hence
we might call these homology theories Morava E-theories. If we choose k = Fpn
and T' to be the Honda formal group law of height n, the E(T, k). is what is
commonly written (E,).. A mild variant of the resulting spectrum was shown
to be an A.-ring spectrum by Baker [3]; his methods apply equally to all of the
spectra E(k,T").

Note that the ring E(I',k)o = A(T',k) and, hence, it is a complete local
ring. Fix two objects (I'1, k1) and (T'2,k2) is FGL, and let F = E(T'y,kq),
E = E(Ts, ko).

7.3 Proposition. Let A, be a graded commutative ring so that Ay is a complete
local ring with maximal ideal m. Suppose i : B, — A, is a morphism of graded
commutative rings which is continuous in degree 0. Then the set

Ho E.F,A,)

mE*falg(
1s isomorphic to the set of morphisms in FGL,
(Fl, kl) — (Z*FQ,Ao/m)

Proof. This is a consequence of Landweber exactness and the groupoid point of
view to deformations. See section §17 of [34]. O

For example, if we set A, = E,, the get that
(73) HomEralg(E*Fv E*) = HOm]:gLn ((Fl, kl), (Fg, kg))

If k is field of characteristic p and A a k-algebra, let ¢ : A — A denote
the Frobenius. This is not a k-algebra homomorphism, but the commutative
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diagram

Ek——A
Ek——A
yields a k-algebra homomorphism

c:k®R, A— A

called the relative Frobenius. Now let mg C EoF be extension of the maximal
ideal m C A(T'1, k1) = Ep; that is mg = mEpF and

EyF/mg =k ®g, EoF.
7.4 Proposition. The relative Frobenius
o: k) ®; EoF/mg — EoF/mg
18 an isomorphism. As a consequence

Lkl@EoEoF/lﬁ ~0.

Proof. The first statement follows easily from Proposition 7.3 and facts about
powers series. See [34], Proposition 21.5. The second statement follows from
the fact that

U* : L(k1®RE0F)/k1 - ]LEQF/kll

is both an isomorphism and the zero map. See Proposition 21.2 of [34]. O
7.5 Corollary. The graded cotangent complex is contractible:

Lk1® 5y B )/ (ks [ut 1)) 2 0

Proof. This is a consequence of the previous result and flat base-change (see
[30]) for the square

kg —————— Ky [ut!]

| |

ky ®p, EoF — ki ®p, B, F
O

7.6 Corollary. The moduli space of a realizations of E(T', k).E(T', k) as a com-
mutative E(T, k). algebra in E(T, k), E(T, k)-comodules has the homotopy type
of

B Aut(T, k)

where the automorphism group is computed in FGL,. In particular, E(T,k)
has a unigue Ey -structure realizing E(T, k). E(T, k) as a commutative E(T, k).-
algebra.
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Proof. Let’s write E, and E.E for E(T, k)., etc. We first show TM(E.E) ~
B Aut(E.FE). Putting together the decomposition of the moduli space given
Proposition 5.2, Proposition 5.5, and Theorem 5.8, we see that it is sufficient to
calculate that

D1/, 5(EdE, QVEE)=0

for all t. By Proposition 4.2, these groups are isomorphic to
Dy, r(E.E,Q'E,).

Now Proposition 6.8, and the spectral sequences of Propositions 6.4 and 6.5,
and the previous result imply that this latter cohomology group is zero.

To finish the result we see that Proposition 7.3 — or more exactly its conse-
quence Equation 7.3 — implies that

Aut(E.E) =2 Aut(T, k).
O

7.7 Corollary. Let E(T;,k;) be two of the Lubin-Tate Ey ring spectra. Then
the space of Eo-maps between these spectra has contractible components; fur-
themore the set of path components is isomorpic to the set of morphisms

(T'1, k1) — (T2, ko)

18 FGL,,.

Proof. This is the same line of argument, where the mapping space is decom-
posed via the spectral sequence of Theorem 4.3 or 4.5. O
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