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ABSTRACT We construct stable operations

Tn: E``∗( ) −→ E``(1/n)∗( ) for n > 0

in the version of elliptic cohomology where the coefficient ring E``∗ agrees with the ring
of modular forms for SL2(Z) which are meromorphic at ∞, and Tn restricts to the n th
Hecke operator Tn on E``∗.

In the past few years, the idea of elliptic cohomology has emerged from the combined efforts
of a variety of mathematicians and physicists, and it is widely expected that it will play as
important a rôle in global analysis and topology as K–theory and bordism have in the past. At
present, there is no explicit geometric description of the cohomology theories that arise in this
area, although there are several promising ideas which it is hoped will eventually lead to such a
description. On the other hand, there are constructions of these theories based upon cobordism
theories and for many purposes these seem to be adequate, at least for problems within the
realm of stable homotopy theory . In particular, in this paper we will show that there are stable
operations defined within a suitable version of elliptic cohomology and which restrict on the
coefficient ring to the classical Hecke operators on modular forms. Together with the analogues
of the Adams operations this gives a large collection of stable operations with which we can work.
It is to be hoped that given a good model for elliptic cohomology these operations will have a
more geometric definition as unstable operations and will be of great practical use. Because
our operations are merely additive (and not multiplicative, although they are in a certain sense
symmetrisations of multiplicative operations) they appear to be hard to compute explictly except
in a few simple situations; however we anticipate their use even in their present form. Since this
paper was written the author has been made aware of recent work of G. Nishida [5] on the double
S1 transfer which makes use of Hecke–like operations in a situation seemingly related to elliptic
cohomology, although we do not understand the precise connection with our work.
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encouragement in connection with this work.
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We begin by considering the universal Weierstrass cubic Ell/R∗:

Ell: Y 2 = 4X3 − g2X − g3

where R∗ = Z(1/6)[g2, g3] is the graded ring for which |gn| = 4n. We can also assign gradings 4,
6 to X, Y respectively. Given any Z(1/6) algebra S∗, a homomorphism ϕ:R∗ −→ S∗ induces a
cubic

ϕ∗Ell /S∗:Y 2 = 4X3 − ϕ(g2)X − ϕ(g3).

If we ensure that the discriminant
∆Ell = g3

2 − 27g2
3

is mapped non-zero by ϕ then ϕ∗Ell is an elliptic curve over S∗. In that case we can define an
abelian group structure on ϕ∗Ell when considered as a projective variety—see [3], [9]. This has
the unique point at infinity O = [0, 1, 0] as its zero. We can take the local parameter

T = −2X

Y

and then the group law on ϕ∗Ell yields a formal group law (commutative and 1 dimensional)
Fϕ∗Ell over S∗. This is explained in detail in for example [9]. Associated to this is an invariant
differential

ωϕ∗Ell =
dT

∂
∂Y Fϕ∗Ell(T, 0)

=
dX

Y

which can also be written as
ωϕ∗Ell = d logF ϕ∗Ell

(T ).

Of course all of this applies in the case where ϕ is the identity map! We therefore consider this
case from now on.

The formal group law FEll is classified by a unique homomorphism ϕ: L∗ −→ R∗ where L∗ is
Lazard’s universal ring (given its natural grading). But topologists know that L∗ is isomorphic to
MU∗, the coefficient ring of complex (co)bordism MU∗( ), and moreover the natural orientation
for complex line bundles in this theory has associated to it a universal formal group law FMU .
This is all explained in for example [1].

Hence we obtain a multiplicative genus

ϕE``: MU∗ −→ R∗

and upon localising R∗ at the multiplicative set generated by ∆Ell we obtain a ring homomor-
phism

ϕE``:MU∗ −→ R∗[∆−1
Ell].

Using ϕE`` we can define the following functor on the category CWf of finite CW complexes:

E``∗( ) = R∗[∆−1
Ell]⊗MU∗MU∗( ).

By the next theorem, this is a cohomology theory and is our version of elliptic cohomology .
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THEOREM (1). The functor E``∗( ) is a multiplicative cohomology theory on CWf and ϕE``

extends to a multiplicative cohomology operation

ϕE``: MU∗( ) −→ E``∗( )

which complex orients E``∗( ) in the sense of [1].

Proof: See [4]. The key ingredient is the observation that over a field of characteristic p ≥ 2
the formal group law associated to an elliptic curve has height 1 or 2.

Now we proceed to identify the coefficient ring E``∗ = R∗[∆−1
Ell] with a ring of modular

forms.We begin by considering the ring of finite tailed Laurent series

Z(1/6)((q)) = {f : f(q) =
∞∑

n=N

anqn, an ∈ Z(1/6), N ∈ Z}.

Now write
E2n = E2n(q) = 1− 4n

B2n

∑

k≥1

σ2n−1(k)qk

for the weight 2n Eisenstein series, where we set

σn(k) =
∑

d|k
dn

and Bn denotes the nth Bernoulli number . Then we have the Tate curve

EllTate(q): Y 2 = 4X3 − 1
12

E4(q)X +
1

216
E6(q)

which is defined over Z(1/6)((q)) and induced by the homomorphism

θTate:R∗[∆−1
Ell] −→ Z(1/6)((q))

with
θTate(g2) =

1
12

E4(q),

θTate(g3) = − 1
216

E6(q),

and
θTate(∆Ell) = ∆ = q

∏

n≥1

(1− qn)24.

Now the rings
θTate(R∗[∆−1

Ell]) ⊂ Z(1/6)((q))

and
θTate(R∗) ⊂ Z(1/6)((q))

are rings of modular forms for SL2(Z) in the following sense.
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We follow [3] and [2] in our account; in particular the relevant integrality statements are
taken from the latter reference. Let

H = {τ ∈ C : im τ > 0}
be the upper half plane. Then a holomorphic function f : H −→ C is a modular form of weight
k ∈ Z if

∀τ ∈ H, ∀
(

a b
c d

)
∈ SL2(Z), f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

Let the Fourier series (= q-expansion) of f be

f(τ) =
∞∑

n=−∞
anqn

where q = e2πiτ . If this is an element of C((q)) then we say that f is a meromorphic (at i∞)
modular form and if it is in C[[q]] then we say that f is a holomorphic (at i∞) modular form.
We can then consider the sets of weight k meromorphic modular forms M(C)k and holomorphic
modular forms S(C)k, both of which are naturally considered as subsets of C((q)). More generally,
given any subring K ⊂ C containing 1/6 we can consider the weight k modular forms over K:

M(K)k = {f ∈ M(C)k : f =
∑

n≥N

anqn, an ∈ K}

and
S(K)k = {f ∈ S(C)k : f =

∑

n≥0

anqn, an ∈ K}.

From [2] we know that
M(K)k = K ⊗M(Z)k

and
S(K)k = K ⊗ S(Z)k.

We can combine these groups to give the graded rings of meromorphic and holomorphic modular
forms for SL2(Z) over K:

M(K)∗ and S(K)∗;

these are both K-algebras and the grading is the one for which weight k corresponds to grading
2k.

THEOREM (2). As graded K algebras,

S(K)∗ = K[E4, E6]

and
M(K)∗ = K[E4, E6, ∆−1]

where ∆ = (E3
4 − E2

6)/1728.

Proof: For S(K)∗ see [2]. For M(K)∗ note that if f ∈ M(K)k, there is a non-negative integer
d such that ∆df ∈ S(K)k+12d since ∆ is a cusp form (in fact ∆ = q

∏
n≥1(1− qn)24). But then

the result for S(K)∗ gives us this case too.
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COROLLARY (3). As graded rings,

E``∗ ∼= M(Z(1/6))∗ .

We will now discuss Hecke operators on M(K)∗ and S(K)∗. Again our principal references
are [2] and the more elementary [3], [7]; see also [8].

The Tate curve EllTate(q) can be interpreted as giving a uniformisation of the curve

Y 2 = 4X3 − 1
12

E4(q) +
1

216
E6(q).

Given any τ ∈ H, the lattice Lτ =< 1, τ >⊂ C yields a complex torus C/Lτ . Then the map

℘
T ate

( ; q):C/Lτ −→ EllTate(q) ⊂ CP 2

for which
℘

T ate

([z]; q) =
[
℘

T ate
(2πiz; q); ℘′

T ate
(2πiz; q), 1

]

if z 6∈ Lτ and O otherwise, where

℘
T ate

(z; q) =
ez

(ez − 1)2
+

∑

n≥1

[ qnez

(1− qnez)2
+

qne−z

(1− qne−z)2
]

+
1
12

E2(q)

is Tate’s renormalised version of the Weierstrass ℘-function as described in [2] for example.
Now let n ≥ 1. Then for any lattice L′ containing Lτ with index [L′;Lτ ] = n we have an

analytic surjection of groups
C/Lτ −→ C/L′

with kernel L′/Lτ of order n. If we have L′ =< ω′1, ω
′
2 > then we can assume that τ ′ = ω′2/ω′1 ∈ H.

Then we obtain a Tate curve evaluated at q′ = e2πiτ ′ ,

EllTate(q′): Y 2 = 4X3 − 1
12

E4(q′)X +
1

216
E6(q′)

defined over Z(1/6)((q′)) ⊂ Z(1/6, ζn)((q1/n)), where q1/n = e2πiτ/n and ζn = e2πi/n is a primitive
nth root of 1. So for each L′ we have a homomorphism ψL′ :Z(1/6)((q)) −→ Z(1/6, ζn)((q1/n))
which in turn restricts to ψL′ :E``∗ −→ Z(1/6, ζn)((q1/n)). Now for any subring K ⊂ C we define
the nth Hecke operator (for n ≥ 1) by

Tn:M(K)∗ −→ K(1/6, ζn)((q1/n))

where

(Tnf)(q) =
1
n

∑
Lτ⊂L′

[L′,Lτ ]=n

ω′1
−k

f(q′)

and f ∈ M(K)k, using the above notations.
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THEOREM (4). The function Tn gives rise to K-linear maps for each k ∈ Z,

Tn:M(K)k −→ M
(
K(1/n)

)
k

and
Tn: S(K)k −→ S

(
K(1/n)

)
k
.

Proof: See any of the cited references above, especially [2] which contains the integrality
statements.

Now the Tn satisfy some famous identities.

PROPOSITION (5). For K a subring of C containing 1/6, and for m,n ≥ 1 we have

(a) TmTn = TnTm.
(b) If m,n are coprime then TmTn = Tmn.
(c) If p is a prime and r ≥ 1 then as operators on weight k modular forms,

Tpr+1 = TprTp − pk−1Tpr−1 .

We can evaluate Tpf for p a prime in terms of the q-expansion of f .

PROPOSITION (6). Let p be a prime and f ∈ M(K)k. Then if f(q) =
∑

anqn we have

(Tpf)(q) =
∑

anpq
n + pk−1

∑
anqnp.

We now show how the Tn can be extended to stable operations in Elliptic Cohomology. If J is
a set of (non-zero) primes let E``∗J ( ) be the cohomology theory E``∗( )⊗Z(J−1), the localisation
of E``∗( ) at the multiplicative set generated by J . We will need the elliptic cohomology Adams
operations

ψp
E``: E``∗( ) −→ E``∗J ( ) for p ∈ J .

Then ψp
E`` is a multiplicative natural transformation constructed with the aid of the p-series

[p]E``(X) together with the definition of E``∗( ) in terms of MU∗( ); if α ∈ E``2k, we have

ψp
E``(α) = pkα

and this characterises ψp
E`` as a multiplicative natural transformation.

THEOREM (7). Let J be a set of primes. Then there is a family of stable cohomology
operations of degree 0

Tn: E``∗( ) −→ E``∗J( ), 1/n ∈ Z(J−1)

with the following properties:

(a) For all m,n such that Tm, Tn are defined, TmTn = TnTm.
(b) For all coprime m,n for which Tm, Tn are defined, TmTn = Tmn.
(c) For a prime p with Tp defined and r ≥ 1,

Tpr+1 = TprTp − 1
p
ψp

E`` ◦ Tpr−1 .
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(d) On the coefficient ring E``∗ ∼= M(Z(1/6))∗, each Tn agrees with Tn.

Proof: It suffices to construct Tp for p an admissible prime and then use (b), (c) to define the
remaining Tn; property (a) follows by a careful inspection of the construction and the proof of
PROPOSITION (5) part (a).

Let τ ∈ H and consider the lattice L = Lτ =< 1, τ > and any lattice L′ containing L
of index p. Then there are exactly p + 1 possibilities for L′. Either L′ =< 1/p, τ >= L0 or
L′ =< 1, (r + τ)/p >= Lr for 1 ≤ r ≤ p. We will be forced to treat these two cases distinctly.
The next result is crucial.

LEMMA (8). There are strict isomorphisms of group laws

h0:FEll(qp) ∼=−→FEll(q)

and
hj : FEll(ζp

jq1/p) ∼=−→FEll(q) for 1 ≤ j ≤ p,

both defined over Z(1/6, ζp)((q1/p)).

Proof: The key to the proof lies in the observation that

℘
T ate

(z; q) ∈ (
Z(1/6)((q))

)
((ez − 1)),

which implies that the local parameter

tq = −2℘
T ate

(z; q)
℘′

T ate
(z; q)

∈ (
Z(1/6)((q))

)
[[ez − 1]]

provides a strict isomorphism
Ĝm

∼=−→FEll(q)

defined over Z(1/6)((q)), where Ĝm is the multiplicative group law

Ĝm(X, Y ) = X + Y + XY.

The rest of the proof can now be safely left to the reader!
Now recall from [6] that the ring MU∗MU (defined as the complex bordism of the spectrum

MU) is in fact universal for strict isomorphisms of formal group laws. This ring has the structure
of a Hopf algebroid and as part of this structure there are the left and right units

ηL, ηR: MU∗ −→ MU∗MU

which are ring homomorphisms. Because of this, the p + 1 isomorphisms hj give rise to ring
homomorphisms

Hj :MU∗MU −→ Z(1/6p, ζp)((q1/p))

for which HjηL classifies FEll(qp) if j = 0 and FEll(ζp
jq1/p) if 1 ≤ j ≤ p; also HjηR classifies

FEll(q) in all cases.
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The power series

P (X) =
1
p
[p]FEll(qp)(X) ∈ (

Z(1/6p)((q))
)
[[X]]

gives rise to a new formal group law

F ′(X, Y ) = P
(
FEll(qp)(P−1(X), P−1(Y ))

)

over Z(1/6p)((qp)) which is classified by a homomorphism H ′
0 factoring as

H ′
0:MU∗

ψp
MU−→MU(1/p)∗ −→ Z(1/6p, ζp)((qp))

where
ψp

MU (x) = pdx if x ∈ MU2d

and the second map classifies FEll(qp).
Using these facts we can form the sum

H =
1
p

[
H ′

0 +
∑

1≤j≤p

Hj

]
:MU∗MU −→ Z(1/6p, ζp)((q1/p))

which is a right MU∗ module map. But now recall that

MU∗MU = ηR(MU∗)[Bn : n ≥ 1]

with
B(X) =

∑

0≤n

BnXn+1

being the universal isomorphism from the left to the right universal group law over MU∗MU , as
described, for example, in [6]. Then we see that

Hj

(
B(X)

)
= hj(X)

and
H ′

0

(
B(X)

)
=

1
p
[p]FEll(qp)

(
h0(X)

)
.

It is now clear that for any element u ∈ MU∗MU , H(u) ∈ Z(1/6p)((q)) since it is invariant under
ζp 7→ ζp

k for each k 6≡ 0 (mod p).
As there is no torsion in our rings, we can work rationally and we then find that MU∗MU⊗Q

is the Q algebra generated by the subrings ηL(MU∗) and ηR(MU∗). Hence for any element
u ∈ MU∗MU we can write

u =
∑

n

anbn where an ∈ ηL(MU∗) and bn ∈ ηR(MU∗).

For v ∈ MU∗ ⊗Q, let v(q) ∈ Q((q)) denote the image of v under the map MU∗ ⊗Q −→ Q((q))
classifying FEll(q). Then

Hj(an) = an(ζp
jq1/p) if 1 ≤ j ≤ p
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and
H ′

0(an) = pdan(qp) if j = 0.

Hence we have
H(an) =

1
p

∑

1≤j≤p

an(ζp
jq1/p) + pd−1an(qp).

Similarly we obtain

H(bn) =
(

1 +
1
p

)
bn(q).

Now for each 1 ≤ j ≤ p, Hj extends to a right MU∗ and left E``∗ module map

Hj :E``∗⊗MU∗MU∗MU −→ Z(1/6p, ζp)((q1/p))

and similarly for H ′
0. Hence we also have an extension

Hj : E``∗⊗MU∗MU∗MU −→ Z(1/6p, ζp)((q1/p))

But an element α⊗ v can be expanded as

α⊗ v =
∑

n

αn ⊗ vn

where αn ∈ E``∗ ⊗Q and vn ∈ ηR(MU∗ ⊗Q). It is easily seen that

H(αn ⊗ vn) =
[

pd−1αn(qp) +
1
p

∑

1≤j≤p

αn(ζp
jq1/p)

]
vn(q)

and hence by PROPOSITION (6) we see that

H(αn ⊗ vn) = Tp(αn)⊗ vn.

Therefore, we certainly have

H(E``∗⊗MU∗MU∗MU) ⊂ E``∗ ⊗Q ⊂ Q((q)).

But we already know that

H(E``∗⊗MU∗MU∗MU) ⊂ Z(1/6p)((q))

and thus we have shown that

H(E``∗⊗MU∗MU∗MU) ⊂ E``∗.

Since H is a right MU∗ module map we can form the composite

E``∗⊗MU∗MU∗( )1⊗mu−→ E``∗⊗MU∗(MU ∧MU)∗( )
∼=−→E``∗⊗MU∗MU∗MU⊗MU∗MU∗( )

H⊗1−→E``∗⊗MU∗MU∗( )
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where
mu: MU∗( ) ∼= (MU ∧ S)∗( ) −→ (MU ∧MU)∗( )

is the Boardman map induced by the unit mu: S −→ MU and the isomorphism is described in
[1]. This composite is our required operation Tp.

We end with some remarks.
(i) Genera taking values in the ring of “level N” modular forms have been investigated by

F. Hirzebruch and it seems likely that there are versions of elliptic cohomology related
to these. As Hecke operators are also defined for such modular forms (see [2]), there are
presumably analogous constructions of Tn provided N and n are coprime. The case of level 2
corresponds to the original version of Landweber, Ravenel and Stong [4].

(ii) If we wish to work locally at p rather than with p inverted, there is a theory of p-adic modular
forms (see [2] and [8]) in which the Hecke operator Tp is replaced by Atkin’s operator Up,
given on q-expansions by

Up

(∑
anqn

)
=

∑
anpq

n.

There is a p-adic version of elliptic cohomology but as well as having ∆Ell inverted this also
has Ep−1 as a unit. In fact this theory is K-theoretic in the sense that it is a product of
copies of the p-completion of Adams’ summand of K-theory. We describe this in a second
paper, “Elliptic cohomology, p-adic modular forms and Atkin’s operator Up” to appear in
the proceedings of the International Conference on Homotopy Theory at Evanston, 1988 .

(iii) The version of elliptic cohomology that we use is more fundamental than the one in [4] from
the point of view of stable homotopy theory, since Landweber’s version is a sum of copies of
ours. We will describe in more detail the relationship and also versions at the primes 2 and
3 in a future paper.
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