On the Non-Existence of Kervaire Invariant One Manifolds

M. Hill¹, M. Hopkins², D. Ravenel³

¹University of Virginia

²Harvard University

³University of Rochester

Georgia Topology Conference, May 2009

Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth manifolds of Kervaire invariant one only in dimensions 2, 6, 14, 30, 62, and possibly 126.

Each dimension listed has an associated story.

Corollary (Kervaire-Milnor)

Except in these dimensions, every framed manifold is frame-cobordant to a sphere.

And the manifolds are...

Related to Lie groups

- dim 2 $S^1 \times S^1$ with the left invariant framing.
- dim 6 $SU(2) \times SU(2)$ with the left invariant framing.
- dim 14 $S^7 \times S^7$ with the framing coming from the Caley numbers.
- dim 30 Bökstedt: related to $E_6/(Spin(10) \times U(1))$
- dim 62 Known to exist, but ...?
- dim 126 ?

Definitions & Conventions

- Manifolds are assumed to be smooth and compact.
- Non-smooth manifolds are PL.

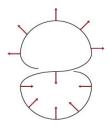
Definition

A framed n-manifold is an n-manifold (embedded in \mathbb{R}^{n+k} for k big) with a choice of framing.

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Pontryagin (1930s)

 $\{n - \text{manifolds with framing}\}/\text{cobordism} \longleftrightarrow \pi_0^n$ Framed 0-manifolds are "oriented" points $\Rightarrow \pi_0^n = \mathbb{Z}$. Framed 1-manifolds are framed circles.



$$\Rightarrow \pi_1^S = \mathbb{Z}/2\mathbb{Z}.$$

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

An Early Error

Framed 2-manifolds are framed surfaces. Pontryagin: framed surgery.

- Can cut out circles and glue in disks.
- Can lower the genus of surfaces.

Get a map $\mu \colon H_1(M; \mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}$. If we can do surgery: 0, if we can't: 1.

Theorem (False Theorem)

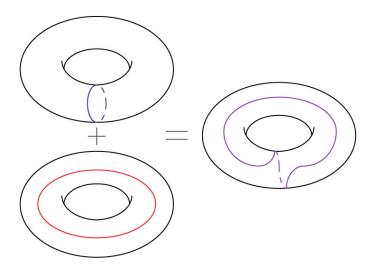
 μ is linear, so every surface is framed-cobordant to S^2 .

The map is actually a quadratic refinement of the intersection form λ :

$$\mu(\mathbf{x}) + \mu(\mathbf{y}) + \mu(\mathbf{x} + \mathbf{y}) = \lambda(\mathbf{x}, \mathbf{y}).$$

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Non-Linearity



What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Major Changes in Geometry

Theorem (Milnor 1956)

There are manifolds homeomorphic to S^7 but not diffeomorphic to it.

Theorem (Kervaire 1960)

There are 10-dimensional topological manifolds that have no smooth structure.

Kervaire showed this by showing two things

- Framed 10-dimensional manifolds have a distinguished quadratic refinement of the intersection form.
- 2 The Arf invariant is zero if the manifold is smooth.

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Kervaire Problem

Definition (Kervaire Invariant)

If M is a framed (4k + 2)-manifold, then the Kervaire invariant is the Arf invariant of a quadratic refinement to the intersection pairing.

Problem (Kervaire Invariant One Problem)

Is there a smooth n-manifold of Kervaire invariant one?

Pontryagin's mistake was that in dimension 2, the answer is yes!

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Homotopy Spheres

Let Θ_k denote the group of *k*-dimensional exotic spheres under connect sum.

Kervaire-Milnor studied the map

$$\rho_k \colon \Theta_k \to \pi_k^S / \operatorname{Im}(J).$$

Surgery:

- ρ_k is onto when k is odd.
- ρ_{4k} is onto.

The cokernel of ρ_{4k+2} is at most $\mathbb{Z}/2$ and is generated by a manifold of Kervaire invariant 1.

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Browder's Result

Return to Pontryagin's dictionary:

```
\{\text{stable homotopy}\} \leftrightarrow \{\text{framed cobordism}\}
```

Kervaire-Milnor story is one about homotopy elements.

Theorem (Browder 1969)

• If $k \neq 2^{\ell} - 1$, then ρ_{4k+2} is surjective.

The generator of coker(p_{2j+1-2}) is represented by h²_j in the Adams spectral sequence.

So the whole game is understanding if h_j^2 survives. h_j is the Hopf invariant one class in dimension $2^j - 1$.

What is the Kervaire Invariant Exotic & Non-smoothable Manifolds Converting to Algebra

Kervaire Manifolds

\mathbb{C} , \mathbb{H} , and \mathbb{O} exist, so have h_1^2 , h_2^2 , and h_3^2 .

Theorem (Adams: Hopf Invariant One)

For i > 3, h_i does not survive the Adams spectral sequence.

Theorem (Barratt-Jones-Mahowald)

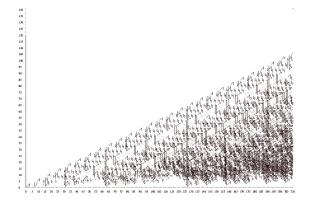
 h_4^2 and h_5^2 survive the Adams spectral sequence.

So homotopy tells us the manifolds exist, but not what they are.

Problems with the Adams Spectral Sequence

Two big obstructions to just computing:

- As the dimension increases, so does the complexity.
- 2 No known techniques apply.



Reduction to a simpler case

Computational Reduction

Get around this by comparing with a simpler case:

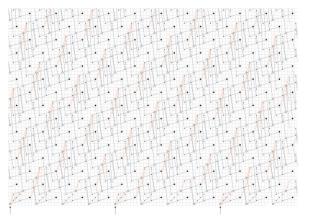
- case must detect the Kervaire classes
- case must be algebraically simpler.

Our simpler case is 16-periodic so computation is greatly simplified.

Reduction to a simpler case

Reduce Computations

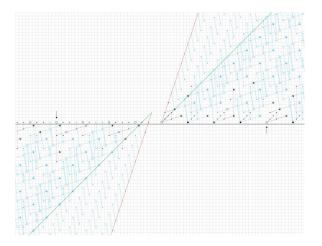
Simpler case is still tricky. We are still computing homotopy groups of a spectrum E.



Reduction to a simpler case

Reduce Computations

Need a new computational tool. The slice spectral sequence.



Reduction to a simpler case

Kervaire Invariant One

Consequences of the slice story:

1 $\pi_{-2}E = 0.$

2
$$\pi_{k+256}E = \pi_k E$$
 for all k.

Together these imply that

$$\pi_{2^{j+1}-2}E = 0$$

for all j > 6. So h_j^2 cannot survive the Adams spectral sequence for j > 6.