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INTRODUCTION

Suppose M is a compact smooth manifold whose stable normal bundle vM is trivial.
Let F be a specific isomorphism of »M with the trivial bundle. The pair (M, F) will be
referred to as a framed manifold. Suppose the dimension of M is 2n where n is odd,
then, in [9] (see also [10]), Kervaire has defined a Z/2 valued invariant K(M, F).
Browder has shown[2] that K(M?*, F)=0 unless n =2*— 1, and has given a neces-
sary and sufficient homotopy theoretic condition for the existence of 2**'—2 dimen-
sional framed manifolds with Kervaire invariant one. It is of much interest, both in
differential topology and, via Browder's result, in homotopy theory to decide in which
dimensions of the form 2**'-2 such manifolds can exist.

In dimensions 2, 6 and 14, §'x S', §*x §% and §”x §7 can be framed to have
Kervaire invariant one. In dimensions 30 and 62 the necessary homotopy theory has
been done: the 30-dimension case is published in [13], the 62-dimension case is due to
Barratt and Mahowald but is not yet published. The problem is unsolved in dimen-
sions greater than 62.

Extended power manifolds are constructed in the following manner: Let Y be a
manifold on which the group G C X, acts freely (%, is the group of permutations of a
set with t elements). Let N be another manifold, then G acts on the cartesian product
(N)' by permuting factors. We may form the “‘extended power” Y Xg(N)' which will
always be denoted Ys(N). This is obviously based on the extended power con-
struction in homotopy theory, a construction which has been extensively studied.
Some of this work, and feferences to the origins of the ideas involved, may be found
in Milgram's papers[16-18] and Nishida's papers[19-21].

The purpose of this paper is to examine the Kervaire invariant of extended powers
of §7, a project suggested some time ago by Barratt.

First it is necessary to decide when Y5(N) can be framed. Define Y = Y/G and let
£ be the t-dimensional bundle Y5(R)— Y.

T_HEOREM A. Let N" be a framed manifold. Then Ys(N) can be framed if and only
if TY + n& is stably trivial. (Here X stands for the tangent bundle of the manifold X.)
Given a framing F of N and a stable trivialisation « of 7Y + ng then there is an
associated framing of Ys(N), denoted ag(F).

This theorem, in statement and proof, is a straightforward generalisation of results
due to Milgram [15]. Milgram considers the case ¥ = S™ and G = X,.

From now on assume Y, G and N have been chosen so that Y5(N) can be framed.
We go on to study framings of Y5(N) induced by framings of N. Let gt N> O be a
map (g will be identified with an element of KO™'N) and let F be a framing of N.
Then, as described in [23, §2] we may twist F by g and obtain a new framing gF.

THEOREM B. Suppose G is a 2-group. Then there is a homomorphism h: KO™'N -
KO™'Y&(N) such that

ag(gF) = h(g)ac(F).

The homomorphism k will be described in detail in §3.
We come now to the main results of the paper, concerning the Kervaire invariant.
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We will use the wreath product 3, [ £, C 3. This is a Sylow-2-subgroup of X4 It is
conjugate in X4 to the dihedral group D,, that is the full symmetry group of the square.

TusoreMm C. Let X be an orientable surface of genus 5, and G =2, [ Z2. Then G
can act freely on X so that

(i) Xg(8") can be framed.

Let H be the Cayley number framing of S’ and let a be any choice of stable
trivialisation of X + 7& (the notation is as in Theorem A). Then

(i) K(Xe(SN), ag(H) = 1.

Notes. (i) The Cayley number framing of S’ may be described as follows. Let F be
a framing of S” which extends over D? and let g: §7— SO be the map obtained from
multiplication (on the left) by unit Cayley numbers. Then H = gF.

(i) Using the description of G as the dihedral group D, one may give an explicit
construction of the surface X.

(i) The theorem remains true if S is replaced by S° and the Cayley number
framing replaced by the Quaternionic framing. If S7 is replaced by S' then Xs(SY
cannot be framed.

In view of Theorem C we go on to consider the group G = £,/2,[2,C 35 and ask
whether there is a 6 manifold Y on which G acts freely so that Y(S") with framing
induced by the Cayley number framing of S7 has Kervaire invariant one. The next
theorem shows this cannot happen. In the statement of the theorem Gi C X is the
iterated wreath product G, = 2, [ ... [ Z; (k copies of Z,).

Tueorem D. Let Y be a d-dimensional manifold where d =2'*'—2—7 - 2. Suppose
G, acts freely on Y and that YG.(S’) can be framed. Let F be any framing of S and a
a stable trivialisation of ¥ +7& Then if d# 2 the Kervaire invariant of the 2 -2
dimensional manifold Y, (S7) equipped with the framing ag,(F) is zero.

Note that Theorem D does not assert that the Kervaire invariant of Yg,‘(S7) is zero
for all framings of this manifold, only for the “natural” framings, that is those induced
by framings of §7. Another way of expressing this is to say that we are considering
the framed manifold Yg,(S7) as a function of the framed manifold s

The line of proof of Theorem D is to use Theorem B and the change of framing
formula for the Kervaire invariant to show that if 4 2 then the Kervaire invariant of
Y;,(8") with framing ag,(F) is independent of the choice of framing F of S’. It is easy
to see from the proof of Theorem A that we may choose F so that
K(Yg,(S"), ag,(F)) =0 and so Theorem D will follow.

This paper is set out as follows: §1 contains the necessary generalities on the
Kervaire invariant, §2 contains a discussion of the extended power construction,
including the proof of Theorem A, §3 contains the proof of Theorem B. In §4 there is
a plan of the proof of Theorems C and D, and a good deal of preparatory calculation
is done, §5 contains the proof of Theorem C and §6 that of Theorem D.

A large proportion of this work is contained in my Oxford D.Phil. thesis, written
under the supervision of Elmer Rees. It is a great pleasure to thank Elmer Rees for
introducing me to this subject and for his constant help and encouragement.

§1. GENERALITIES ON THE KERVAIRE INVARIANT

Suppose (M™ F) is a closed framed manifold. Following Pontryagin[19],
Kervaire[9], Kervaire and Milnor[10], Browder[2] and Brown[3] we may use the
framing to construct a quadratic function

gr: H'"M = Z|2
(all homology groups in this paper will have Z/2 coefficients), that is
gr(x +y)=gr(x) + gr(y) +x - ¥

where x - y stands for the mod 2 intersection number of x and y. There is a mod 2

o
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invariant, the Arf invariant A(gr), associated to gr[1]. A thorough account of this
invariant is given in [20, Appendix pp. 411-413]; A(gg) is zero if and only if gr sends
the majority of elements of H"M to zero.

The Kervaire invariant is now defined by

K(M, F)= A(gF).

It is a framed bordism invariant.

The first result we require is the change of framing formula due essentially to
Brown [3, Thm 1.18, 4, p. 299, Thm 3.3]. A proof of this key result is also given in [6].
To state the result requires some notation. Let v,.,€ H""'BO be the universal
(n + 1)-th Wu-class (see [2, p. 164]). Let y, = Qv,., in H"O.

1.1 THEOREM. Let (M*", F) be a framed manifold and g: M — O. Let gF be the
framing obtained by twisting F by g. Then

(i) qer(x) = gr(x)+x-g*y,

(i) K(M, gF)=K(M, F)+ qr(g*y.).

The second result required concerns the evaluation of the quadratic form g- on a
class of the form Sg‘y.

1.2 Tucorem. Let (M, F) be a framed manifold where n=12'—1 with |=4.
Suppose k =1,2 or 4. Then if yE H"*M

-l )
ar(Sq'y) = Zﬂ (Sq'y) - (Sg™7'y).

Some comments on this theorem are necessary. The hypotheses on n and k are
sufficient for the use of this theorem in this paper. However, the theorem, as stated, is
valid for many more values of n and k. A proof of a more general version of this
theorem will be given in a forthcoming paper[8].

§2. THE EXTENDED POWER CONSTRUCTION
We will take for granted throughout this section the notation and assumptions of
Theorem A. We begin with a proof of Theorem A following Milgram’s proof in [15]
for the special case Y= 8", G =X, Let w: Yg(N)—> Y be the projection.

2.1 LemMMa. 7Yg(N) and w*(zY + n&) are stably isomorphic.

Proof. Since N* can be framed there is an embedding N X R" C R™*". This gives
an embedding j

Y(N)— Yo(N x R")=> Yg(R™).

The normal bundle of this embedding is » = Yg(N x RY) = 7w*L¢£. Since Yg(R™™) is
the total space of the bundle (L + n)¢ it follows that 7( Yo(RY™) = p*(zY + (L +n)&)

where p: Yo(R*™")— Y is the projection. From the definition of the normal bundle of
an embedding

TY6(N)+ w*LE = [*p*(zY + (L + n)f).
However pj = m, so solving this equation stably gives
Y5(N) = 7*(+Y + nf).

The projection 7 has a section, namely Y = Ys(x)— Y5(N) where x is any point of
N.Thus 7Yg(N) is stably trivia.l_if and only if 7Y + n£ is stably trivial. Therefore Yg(N)
can be framed if and only if Y + n£ is stably trivial. This proves the first assertion of
Theorem A.

From now on assume that Y, G and the framed manifold N are chosen so that
Y5(N) can be framed. We now study framings of Ys(N) induced by framings of N.
The framing F of N gives, as in the proof of 2.1, a stable isomorphism of 7Yg(N)
with #*(r¥ + n£). Combining this with a stable trivialisation of 7Y + n& gives a stable
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trivialisation of 7Yg(N). that is a framing of Yg(N). We require rather detailed
information about this framing and so we give a more explicit description of it.

Since £ is a bundle with finite structural group over a finite complex, it follows that
we may choose a large integer L and an isomorphism B: Le—> e (€7 will always
denote the trivial g-dimensional bundle). The stable trivialisation & of 7Y + nf gives
an isomorphism, also denoted a

a: 'Y > ™ +né

where »*¥ is the k-dimensional normal bundle of ¥ with k large. We now get an
embedding i: R* ™ x Yg(R**")—= R*™*" (d = dim Y) as follows:

R¥™ x Yo(RY*") = ("™ +ng) + L& Y + et C R (22)

u"-ﬁB
Let F be a framing of N, then F gives an embedding jr: N X R*— R"™" and so an
embedding

Rk-—m x Y.:;(N X RL)—bRk-.‘ x YG{RLﬂr). (23)

" Note that Ys(N x RY) = w*L¢£ so there is an isomorphism h

R*™ x R X Yg(N)———— R*™ x Y5(N % RY). 2.4)
Ix(w*g)"
The composite of these three embeddings gives a framed embedding of Yz(N) in
RY* L Denote the associated framing by ag(F).

2.5 LemMma. The framing ag(F) does not depend on the choice of trivialisation
B: Lé—e™.

Proof. Suppose we alter 8 by an automorphism g: €'“ > €. Stably this alters the
embedding i of (2.2) by adding €™ and replacing i by i+ g. The embedding of (2.3)
remains unaltered. The isomorphism k of (2.4) is altered by adding € and replacing h
by h+g™'. The composite remains unaltered and so, stably, the embedding is
independent of B. However k and L can be chosen large enough so that the
embedding is already stable. This completes the proof.

Next we examine how the framed bordism class of Ys(N) with framing ag(F)
depends on the framed bordism class of (N, F).

2.6 LEMMA. Suppose (N, F) is framed bordant to (P, H). Then (Yg(N), ag(F)) is
framed bordant to (Yg(P), ac(H)).

Proof. Let Y* denote Y with a disjoint base point. For any pointed space X let
X denote the t-fold smash product of X with itself. Given (N, F), then when the
framed embedding corresponding to the framing ag(F) is compactified the resulting
map between spheres factorises as follows:

sd’v!ﬂ.[.__b Sl—nt AY* A G(SLH;)(:) St—.u AY A (SL)(I)__' St—.ﬁrL
A Lalag®® B
where A is the compactification of (2.2), ® is obtained from compactifying the
embedding jr: N x RE— R"*" and B is obtained from compactifying (2.4). Once we
have fixed a the homotopy class of the above map depends only on the homotopy
class of ®. By transversality the lemma follows.

We next show that the framed bordism class of (Y5(N), ag(F)) depends only on a
suitable bordism class of (Y, a). Let r: G— O(t) be the permutation representation,
that is the representation of G obtained by allowing G to permute the basis of R'. Let
p be the bundle over BG classified by Br. Giving an isomorphism a: v*Y 5™+ ng
is equivalent to giving a bundle map »*Y = €™ + np, which on base spaces classifies
the principal G covering Y - Y/G = Y. We may classify d-dimensional manifolds
whose stable normal bundle admits such a structure up to the evident bordism
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relation. The resulting group is denoted by Q4(BG: np). Transversality shows that
Q4BG; np)= w4..{T(np)) where T(n) stands for the Thom complex of the bundle 7.
The proof of the next lemma follows directly from the definitions.

2.7 Lemma. Suppose (Y, a) and (Z,B) define the same element of Q4(BG; np).
Then (Yo(N), ag(F)) is framed bordant to (Zg(N), Bs(F)) for all framed manifolds
(N, F).

§3. THE PROOF OF THEOREM B
We now examine how the framing as(F) depends on the framing F, and hence
give a proof of Theorem B. The first task is to ‘describe the homomorphism
h: KO'N - KO 'Yg(N). Let y: Y — EG be the equivariant map classifying the free
G-action on Y. Given g € KO™'N form the map

Y %5 (N) ——— EG %5 (N)

yxgil)! Ixgiey

EG Xa(O)'—D'O (3.1

where D is the Dyer—Lashof map for the infinite loop space O, see [5. pp. 36-41]. It
follows from the properties of the Dyer-Lashof map (see the diagram on page 39 of
[5]) that h is a homomeorphism.

To prove Theorem B we require a concrete description of the Dyer—Lashof map D
when G is a 2-group. This is provided by a straightforward generalisation of an
observation in [12]. Some notation is required. Let G, C £ be the wreath product
Gy=3:%....%, (k copies of X,), and let r;: G,— O(2°"") be the representation
defined by allowing G, to permute the factors of (R™ ).

3.2 LEmMa. Let E'Gy be the l-skeleton of EG.. Then for each L =1+ 2 there exists
a map fip: E'Gy— O(2**"Y) such that

(i) firlgx) = fir(X)re(g)™' for g € Gi, x € E'Gy

(ii) The following diagram commutes, up to homotopy.

i fer
E'G, X6, (0@ ——— 0@2")

n n
EG, %5, (O) —0

Here f,, is defined by

ferlxi A An) = fi(XA@ - - @ Apdfic(x)™
forxEE'Gy and A,, ..., Ax € 0(25).

Proof. The proof is by induction on k. When k = 1, G = X, and Madsen’s descrip-
tion of the Dyer—Lashof map. [12, pp. 237-241], shows the result is true. We
summarize Madsen's work. As usual §' with the antipodal action of %, will be
identified with E'S,. For each L =1+ 1, we know that §' is contained in the units of
the real Clifford algebra C;. As a vector space C; has dimension 2" The map
fie: §'= 02" is defined as follows: Regard R*™ as C.@® C. and for (u,v)E
C.®C., and x €5 CCy define fi2(x)(w, v)=(1/V2)(x(u + v), x(u — v)). Here the
product on the right hand side is the product in the Clifford algebra. It is clear that f,
satisfies property (i) of the lemma, Madsen points out, in [12], that it also satisfies
property (ii).

Now assume as inductive hypothesis, that for each s <k the map f,.: E'G,~
O(2"**) has been defined for each L=1[+2, with the required properties. Since
Gy = 3. Gy, it follows that E'G, C S' x E'G,_, X E'G,_,. For each L=1+2, L+k—
1=1+2 since k=>1. Therefore by the inductive hypothesis we have defined
fireer: S'=>0(2%*). Also by the inductive hypothesis we have defined

TOP Vol. 17, No. 3-D
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fime: E'G, .- O@2* "), Now define fir: S'X E'Giy X E'Ge1— o@2v*) by
furlx, y, 2)= Frrskt ()i (¥) @ fiori(2)). Finally define f,. to be the restriction of
fio to the subspace E'Gy. Property (i) is verified directly from the definition of f;; and
property (ii) is verified by using the inductive hypothesis and the commutative
diagram in Dyer and Lashof’s paper [5, p. 39].

3.3 CoroLLary, Let GC3, be any 2-group, and let r.: G—>OQ2"-1t) be the
representation obtained by allowing G to permute the factors of (R*Y. Let E'G be the
[-skeleton of EG. Then for each L=1+2 there exists a map fi: E'G = 0% - t) such
that

(i) fulgx) = fulx)r(e)™ forg €G, x€ E'G.

(ii) The following diagram commutes up to homotopy.

1
E'G x4(02h) —— 0(2- - 1)
n n
EG %6 (0) —— O

Here fi(x: Ay, .., A)=fLONA @ - - @ ANl

Proof. Lett=2"+--.+2" be the 2-adic expansion of £. Then Gy, X - - X Gy isa
Sylow-2-subgroup of X, Since G is a 2-group G is contained in some Sylow-2-
subgroup and since all such subgroups are conjugate we may assume GCGy%x- %
Gy For L>1+2 define fi: E'Gy, % - - - X E'G,,~ 02" - 1) by

fr(xi, - o Xa) = fro(X) @ fior (x2) @ - - - @ fie,2(xa)

for x; € E'Gy, where the fi's are given by 3.2. Now define the map f; by restricting fr
to the subspace E'G. Property (i) is verified directly from the definition and property
(ii) is verified using the commutative diagram in Dyer and Lashof’s paper [5, p. 39].

Proof of Theorem B. Y is a d-dimensional manifold with a free G action and so
the equivariant map y: ¥ - EG factorises as

YT’ E*'G C EG.

Choose L=d +3 such that 2> n where n = dim_N. The map fr-¥": Y>>0t
provides a trivialisation 8 of the bundle 2L£ over Y as follows:
B: 2 = Yg(R™)—> ¥ x R™"

is ih'.ﬁned by B(y:vi-. ) =fr ¥(@ - @ 1) where yE Y and v, 3 ..., E
R

We will use this choice of 8 in forming the embedding (2.2) and isomorphism (2.4).
Let j: N X R™ 5 R™" be the embedding corresponding to the framing F and let
j»: N x R** = R*"" be that corresponding to the framing gF. Regard g as a map of N
into O(2%), then ja(x, v) = ji(x, g(x)"'v). Choose a stable trivialisation a of 7Y + nf and
let iy, ia: RE™ X R" % Yg(N)— R4***? be the embeddings formed using a, j, and B.
and a, j, and B respectively. Then

ixvy, v2, 2) = iy, K@) (2)(v2), 2)
where v, € R¥™, 1, € R™, z € Yo(N) and h(g): Yo(N)— O(2" - 1) is given by
RNy xi .- x) = fo- YONEx) @ - - - D gxNfL - ¥'(¥) ™.

Corollary 3.2 shows that ii(g) thought of as an element of KO7Yg(N) is equal to the
element described in (3.1). This completes the proof of Theorem B.

THE KERVAIRE INVARIANT OF EXTENDED POWER MANIFOLDS 255

54.PLANOFTHEPR(X)FOFTHH)REMSCANDDAND
SOME PRELIMINARY CALCULATIONS

We begin by fixing some notation which will be used for the rest of this paper. Let
¥ be a d-dimensional closed manifold, where d =2""'—=2-7-2% with a free G,
action. In order that d be strictly positive we will assume [> 4. Assume ¥ +7¢ is
stably trivial (the notation is as in Theorem A) and fix once and for all a stable
trivialisation e of this bundle. Let F be a framing of S7 which extends over the disc
D® and let g: S7— SO be the map obtained by multiplication, on the left, by unit
Cayley numbers. We deduce from Theorem A that the 2t*' -2 dimensional manifold
Ya‘(S7) can be framed. Let B be the framing of this manifold induced by F, that is
B = ag,(F). Then from (2.6) we see that (YG,(S’).B) is a framed boundary and
therefore

K(Yg,(S"), B)=0. 4.1)

Note that KO™'S” = Z and the map g represents a generator of this group. Recall
the homomorphism h: KO™'S'> KO™'Yg,(S) described in §3 and the definition of
ya_; in H*'O given before (1.1).

4.2 LEmMa. The following are equivalent:

(i) There is a framing ® of §” such that K(Y5,(5"), ag,(®) = 1.
(ii) K(Y5,(S"), ag,(gF)=1.
(iii) gs(h(g)*y-1)=1.

P;aof. Every framing ® of S’ is of the form (mg)F for some integer m. Using

Theorem B, 1.1, and 4.1 we deduce
K(Y5,(S"), ag,(mgF)) = ga(h(mg)*y2-1).

since by definition B = ag,(F). Now y, =Quv,..€E H"O where v, Is the Wu-class.
Therefore if f: X - O is a map it follows that (mf)*y, = m(f*y,). Therefore if m is
even h(mg)*y._, = 0 and if m is odd h(mg)*yz_, = h(g)*y:,. The lemma now follows.

The plan of the proof of Theorems C and D is as follows: Lemma 4.2 shows we
only need compute gg(h(g)*y»_y). A calculation due to Kochman[11] enables us to
compute h(g)*y,_,. We next show that there are classes u € H* Y (S") and v E
H* Y (5" such that h(g)*yy-= Sq'u + Sq*v. We now use (1.2) to compute
gs(Sq'u + Sq*v). Lemma 4.2 shows that we will have dealt with all induced framings
of Ya.(S’).

The main purpose of this section is to prove the following theorem.

4.3 THEOREM. Assume | =4, then there exist classes uEH""Yg‘(SH and v €
H?Yg,(S") such that

h(gy*(y2-)) = Sq'u + Sq*v.

It is convenient to factor h(g). For spaces X define E;X to be the space
§%x3,(X x X) where X, acts antipodally on S” and by switching factors on X x X.
The space E,X is a functor of X in an obvious way. We make the following
identification

EG, X, (X" =E;...EX  (k Ei)
= EX.
Write E;°X = X. Now define maps
2 E*8"> S0 (4.4)
inductively by setting g, = g: $”— SO and defining g, to be the composite

E;*S" = Ey(E;*'S") ——— E.SO — SO.
Ejei-1) D
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where D is the Dyer-Lashof map for SO. Then using the diagram on p. 39 of Dyer
and Lashof’s paper[5] it follows that h(g) factors as

Y X, (8§ ——— EGi %, (8")" = E/'S’"—> SO (4.5)
¥ X Gt 2
where y: Y - EG, is the equivariant map classifying the free G, action on Y. _

Most of our subsequent calculations are carried out in the ring H *F,*S7. First we
record the structure of H*E,X. This consists simply of well known results see
[5, 14, 15, 19-211. ‘

Let W be the usual resolution over Z/2 of Z, by free 3, modules, that is
W, = Z/2[%,] with generator e,, and the differential is determined by de, = €,y + Te,
where TE3, is the non-trivial element. Let X be a c.w. complex then form the
cochain complex C=W*®:, H*X @ H*X, where 3, acts on H*X ®'H*X by
T(a®b)=b®a. The co-boundary homomorphism is determined by
5e"Rx@y) =" ®(x®y+y® x), where ¢ € Hom (W,, Z/2) is dual to e,. Then
H*C = H*E,X, see [5, Lemma 2.4]. We abuse notation and write e" ®x®x for the
cohomology class of this cocycle. We write [x, y] for the cohomology class of the
cocycle 1® (x ® y +y ® x). Note that [x, y]= [y, x] and [x, x]=0. -

Let {x;, x2, ...} be a basis, of homogeneous elements, for H*X, then a basis for
H*E.X is provided by the following elements;

EFRx®x, n=0 [xx) i#]Q
Products in H*E,X are determined by the following formulae; (see for example [15.
p- 391
(" Rx@xNe" Ry @ y)=e"" @ xy @ xy
("Rx@x)y.z]1=0, ifn=1
(1 ® x @ x)y, z] =[xy, xz]
[x, yllu, v]1=[xu, yol+ [xv, yul.

(4.6)

Let f: X—»Y be a map, then (E:f)*: H*E,Y - H*E;X is determined by the
formulae;

(Exf)¥e" ®x®x)=¢" @ f*x ® f*x

4.7)
(Exf ¥y, 21 = [F*y. f*z).
There are various natural maps associated to E; X;
ji: XxX->EX is the natural inclusion
m: E.X - BX, is the natural projection (4.8)
t: H¥(S"x X x X) » H*E>X is the transfer map associated to
the covering S™x X X Y = E;X.
In cohomology these maps are determined by the following formulae;
Fe"®x®x)=0, ifn>0
FMI@x@x)=x®x
Flxyl=x@y+y®x 4.9

m*e"=e"®1IX®1
t(1®x®@y) =[xyl

Finally the action of the Steenrod algebra is determined by the following formulae;
(see [15, p. 40] and also [19, 21, p. 716])

f()r I,‘eHX and k=1
t *E : 2(‘("‘“’1) I.,.t_‘z-:s' CS
=0 =2

THE KERVAIRE INVARIANT OF EXTENDED POWER MANIFOLDS 257

forxe H"'X

' n—i\ , | ; . ;
SC1@x®n =3, ([ 75;)e ¥ @Sex@Sa'x+ 3 (5a7x Sa'l, (@10
for x, yEH*X , 7
Sq'[x, y]= Q‘Z‘I [Sq""'x, Sq'y].

In (4.10) where the limits of the summation are not explicitly given then the sum is to
be taken over all values of i for which the summand makes sense.

Now suppose X is an infinite loop space, then there exists a map D: E;X - X
such that Dj: X x X=X is the multiplication in the H-space X. Therefore
(Dj)*: H*X - H*X ® H*X is the comultiplication ¥ in the Hopf algebra H*X.
Since X is homotopy commutative

, VX)) =@+ (xi@x1+x1®@x), for xEH*X.
Dual to the Dyer—Lashof homology operations in H . X there are the Dyer-Lashof

cohomology operations Q%: H"X — H"*X. They satisfy the following formula. Let
x € H"X, then

D*x = <§‘ " @ Qix ® Qix + X [x, x7). (4.11)

Kochman has computed these operations in H*SO. To state his results let
Wasy € H*'BSO be the universal Stiefel-Whitney class and let a, = Qw,.; in H"SO.

4.12 TueoreM. (See Kochman’s paper [11, p. 107, Thm 5.2].
” =]
Qiac= (; _ r)ﬂkm

Our first task is to compute h(g)*yy.; where yy.,=Quy (v, is the universal
Wu-class). From (4.5) this involves computing gfy»_; and so, from the definition of g,
(see 4.4), computing D*yy_, where D is the Dyer-Lashof map for SO. We therefore
need to compute Qjy.,. Now it is known that

(i) v2 = wy + decomposables

(ii) v, is decomposable {f n# 2’

(iii) If a € H*BSO is decomposable then Qla = 0.

Therefore yy_, = ay_,. The computation of Qiy._, is completed using the following
lemma whose proof is left to the reader.

4.13 LeEmMMA. Let k=27 —1, then (;::_)E Imod2 if and enly if k—r =29-1

with q <p.
4.14 CoroLLARY. Let D: E;SO — SO be the Dyer—Lashof map. Then
D*yy =1, y2 ] + |=2=1-z @ v @ Yoy

Proof. Since yy_;=Quy it follows that W(yy_;) =y, ® 1+1® y»,. This ac-
counts for the term [1, y»_,]. The rest of the expression is accounted for by the
description of D* in terms of the operations QJ, the observation that y,_; = ay_; and
(4.12) and (4.13).

Recall the map g, defined in (4.4). Define a cohomology class z; € H*'E*S7 by

2ot = g Yar. (4.15)
By definition go: S7— SO is just a generator of KO™'S”. Therefore, if we define
o € HS to be the non-zero element, we have
20=0  if 1#3

4.
zga=0c in H'S". @.16)
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We describe the classes z; in H*"'E;*S” inductively on k. To formulate this r:;s:llt
some remarks on the cohomology of E;*S7 are required. O:Jser:re that E;’S'=
EJ(E;*'S"). We always write H*E-*S" as H*E,X where X = E*"'S".

4.17 Lemma. In H*'EXS" = H'Ey(E'S))

=1
z =1, Ze-) + 2 pPEH & Zi-tm ® Zg—tum=
m=3

Proof. When k =0 this is just (4.16). The general case follows from the definition
of z, as g1 ya,. the factorisation of g as D - Exgi-y, Lemma (4.14) and the formulae
(4.7).

Now let ¥: Y Xg, (§7)* = E+*S7 be the first map in (4.5). Then, of course,

h(g)*ya1 = T*BL V21 = ¥*2ur

The proof (4.3) is completed by choosing classes, for [ =4, a,, € H*E,*S” and
by, € H*"ES” such that

2= Sq'ag + Sq*by,.

The class ay € H2EAE*"'S") for [=4 is defined inductively on k, by the
following formulae:

ag; =0 forall =4 in H*2S".
i -1 QT
=0, G+ 1@z 3@z 10 H"“ELE)"'S")

-1
ay=[1, a-ul+ E. " @ 2 1m ® Ziotm

for 1 =5, in H* 2EAE,*"'S").

(4.18)

The class by, € H* *Ef(E''S") for (=4 is defined inductively, on k, by the
formulae:
by;=0 foralll=4 in H™'S
be=0  in H'E{E''SD (4.19)
by =1 bl + @23 @z for!=5  in HYEAE>'S").
Before showing that a;; and by, have the required property we need a preliminary
lemma.
4.20 LemMA. Sq'zi; = Sq°zi, = 0, where z,, is the class in HY'E;*S’ defined in (4.15).

Proof. The proof is typical of several calculations we will do. We proceed by
induction on k using (4.16) and (4.17) and the formulae (4.6)—_(4.10). When k =0 the
result is obvious from (4.16). In general we compute Sq'z; using (4.17) and (4.10).

-1 45l _gm ety
Sq'zu =11, Sq'znl+ E=3 (2 1 )92‘ D 2 tim @ Zk-tme

L _Am
By induction Sq'z., = 0. Further (2 12 )5 0O mod 2 and so Sq'z, = 0.
We now compute Sg*z using (4.17) and (4.10).
-1 [ _am _—
Sq’ziy = [1. Sq°z-ul + > {(2 22 )éll‘z @ Zi-tm @ Zk-tm
m=3

I __am _ m ety
fET e @ Sq'2ictn ® 54251 |-

2 —2™\
By induction Sg’z_,=0 and Sq'zi-1m =0. Further ( 5 )=0mod2 and so

Sqllg; =0.

THE KERVAIRE INVARIANT OF EXTENDED POWER MANIFOLDS 259

421 LemMa. With the above definitions, zi, = Sq'ay, + Sq*by, in H*'E;*S, for
1=4.

Proof. The proof is by induction on k. When k = 0 the result is trivial for referring
to (4.16) we see that for [ =4, z,, = 0 and referring to (4.18) and (4.19) we see that for
& 4, do; = 0 and bu,] =0.

We now do the case [ = 4. Referring to (4.18) for the definition of a,s and using
(4.10) we see that

Sq'as=[1.8q'ac + G)e ® zk-13® ze-13+ [5G 2130 Ze1a]

=[1,5q"'as-14 + e @ 2-13® 2412

since G) = 1 mod 2 and by (4.20), Sq'z-13=0.

Referring to (4.19) for the definition of b,s we see b,y =0.
Now using (4.17) in the case | = 4 we see that

za=[1, zeral + € ® 213 ® Z13= 5¢ ' s
This proves the lemma when [ =4.
For | =5 we compute Sq'ay, and Sq*by, using (4.18), (4.19) and (4.10):
=1 I _am __
Sq'au =1, Sq‘at_u] + Z‘ (Z—Ll—l)ey“r ‘“®Zk—ln ® Zk-t.m

+[8q" ze-1.4-15 Zems-
(The term [Sq'Zi-1s-1» Zi-14-1) comes from Sg'(1 ® zi—y -1 ® 2x-1:-1).) However the

I _am __
F 21 I)El mod 2 and §q'ay_;-1 =0 by (4.20) and so

-1
Sq'ay, =[1,8q a1+ Z‘ TR g @ Zitme

binomial coefficient (

Next we compute Sq'by, for [ =5
4 4 2‘ -12 2-15
Sq°by; =1, Sq b1 + ( 4 )8 ® 213 ® 213
2'—13
* ( > )e"‘"@Sq‘zkf.;«@Sq'zH,s

+ (2 BM)EZL!’@) Sq*2-13® Sq° 213

I _
Now (2 4 12) = 1 mod 2 and by (4.20), Sq'zi-1 3= Sq’z-13=0, therefore

Sq*bu =11, 8¢ bi-u] + €™ ® 213 ® zioa.
Adding Sq'ay, and Sq*b,, and using the inductive hypothesis to show that
[1, 5q'ai 10+ [1, S$q*be-1s] = 1, $q'ay-1, + Sq*by-1,]
=[1, Zx-1a]
gives the following equation
-1
Sq'a + Sq*bes = (1, Ze-1d) + 2_:3 T ® 2 ® T

The left hand side of this equation agrees with the expression for z; given in (4.17).
This completes the proof of (4.21).

We have now completed the proof of (4.3) for writing ¥: Yg,(S7)— E;*S” for the
first map occurring in (4.5), we see, referring to (4.4) and (4.5), that

hig)*y2-1= ¥*gTya = ¥*(z) = ¥*(Sq'aw, + Sq°biy).
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Now take the classes « and v of (4.3) to be

u=y*ag. v = ¥*by

§5. THE PROOF OF THEOREM C

We begin by constructing the surface X with its free G =2,J 3, action, and
showing that X5(S7) can be framed. We then use the calculations of §4, in the case
I =4, to show that X5(S7) can be framed to have Kervaire invariant one and to
identify this framing. Throughout this section G = 2 [3.C 2,

Note that BG = E»(BX,). Recall H*BX,= Z/2[e] where ¢ € H'BZ, is the non-zero
class. We use the notation of (4.6)—(4.10) to describe H*BG.

Let # stand for connected sum and define the surface X by X = P# T where P is
the projective plane and T is the torus $'x §'. We define a map X — BG. First define
a: P — BG to be the composition.

PCBEZ——;—‘ BE:X Bz-_-—]-’ E1B£1:BG. (51)

where i, is the inclusion of the first factor and j is the inclusion defined in (4.8).

Let A: BS,— B3,% B3I, be the diagonal. Note that the map I1XA: S"xXBX,—>
§”x BY, X B3, is ¥, equivariant where X, acts on S=x B, by the product of the usual
action on S™ and the trivial one on BX,, and 3, acts on S*x BE,x BZ, by T(x, y,2)=
(—x, z,y) where T is the non-trivial element of ¥, Dividing out by X, gives the map
1x EJA: BE; X le—* BG.

Now define b: T — BG to be the following composition:

TCBX,X BEIT BG. (5.2)

Finally define ¢: X - BG to be the composite
X-PvT-BG (5.3)

where the first map is the collapsing map.

Let X be the total space of the principal G covering induced by ¢. Then it may be
checked that X has genus 5. Clearly X has a free G action and X/G = X.

Before proceeding any further we need to establish some notation for H *X,

H'X=H'P+H'T=Z[2+ Z[2+ Z]2.

Let u € H'X be the generator coming from H'P and x, and x; those coming from
H'T. Then
H>X =Z2
and
w=xx2#0, ux, = ux>=0.

5.4 THEOREM. The manifold Xo(S") can be framed.

Proof. With the notation of Theorem A we need to show that X +7£ is stably
trivial. Stable bundles over a surface are classified by their Stiefel-Whitney classes.
We will prove the theorem by showing W(:X) - (W(£)) = | where W stands for the
total Stiefel-Whitney class. Note that W(rX)=1+u+u’

Let p be the bundle over BG classified by Br where r: G - O(4) is the permutation
representation of G C X,. Then £ is just c*p. We compute a*p and b*p where a and b
are defined in (5.1) and (5.2).

By definition G is the subgroup of I, generated by the permutations

(12), (34) and (13)(24).
Let i;: £,% £, G be the inclusion of the subgroup generated by (12) and (34). Then
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ji= Bi.: BE.EX B3,— BG where j is the map occuring in (5.1). Let i Z2,x2Z,— G be
th_e inclusion of the subgroup generated by (12)(34) and (13)(24). Then 1xg,A=
Bi,: B3, x BY,— BG where 1 Xz A is the map occurring in (5.2).

Let s: %,— O(2) be the permutation representation. Then ri;: X2 X Z,— O(4) is just
the direct pmd‘ucl s % 5. Thus j*p is classified by Bs x Bs. However Bs classifies the
bundle H +€' where H is the Hopf line bundle over BZX, Thus j*p=
(H + €)% (H + €"). Therefore

a*p=H,+¢€
where H, is the Hopf line bundle over P

The representation rix: £, % £,— O(4) is equivalent to the external tensor product
s®s. Now (1x5,A)*p is classified by B(ri;) and therefore (1Xs,A)*p= (H +€")
where ® stands for the external tensor product. Therefore .

b*p=(H,+eV@H +e)=H@H +H @e'+e @H,+e' ® €'
where H, is the Hopf line bundle over S'.
A straightforward calculation now gives
W(a*p)=1+u, Wi(b*p) =1+ x;x3
Therefore we deduce
W(E) = W(e*p)=1+u+xx=1+u+u’
Finally W(rX). W(&) = (1 + u + u??=1 and the result follows.

) Note. The above argument actually shows that 7X + k£ is stably trivial if and only
if k=3 mod4. Therefore Xg(N) can be framed if and only if dim N =3mod4, in
particular X¢(S?) can be framed but Xg(S') cannot be framed.

We now summarize the information required from §4. The notation is that

described at the beginning of §4. Note that the Cayley number framing H is just gF,
and so, as in (4.2)

K(XG{STL ag(H)) = qa(h(g)*yis)-

Refe_rring to (4.5) we see that h(g)= g,y where ¥: Xs(S§)— E;E,S’, and g, is
defined in (4.4). Therefore referring to (4.15)

h(g)*yis= ¥*224
where z,,€ H"E,E.S".

1 Recall that o € H'S’ is the non-zero element, we need the following cohomology
classes

a:=1@Re®o in H“E,§ see (4.18)

z13=[1, 0] in H'E.S’ see (4.16) and (4.17)

a4 =[l, a4 +1® 21:® 213 in H“E,E,S’ see (4.18)
bya=0 in H"E,E,S" see (4.19).

According to (4.21), z24 = Sq'a,4. (Note this is easily checked in this case). Therefore,
according to (1.2),

qp(¥*224) = ¥*(a24- Sq*ay).
The proof of Theorem C is completed by proving the following result.
5.5 TueorEM. With the above notation
F*(ars - Sq’azs) # 0.
Proof. First we expand a4 - 5q’as4 using (4.6) and (4.10). From (4.10)
Sq’are=[1,5¢%ai ]+ € @ 215 @ zus.
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Using (4.6) we deduce that z,5- ;3= 0. A further application of (4.6) gives
[T quﬂz.d =[as Sq’aid +11,a14- quau] +[z13- @14 213 Sq’a,4).
Next using (4.10), we compute Sq’a;.
Sgla =P ®a in H*E,S’,

and, therefore, since ¢>=0 in H"S’, we deduce from (4.6) that

e Sq’a1s=0  in HYE,S’

Ziz - @14=0 in HYE.S".
Therefore we have shown
@24 Sqaze=[a:4 Sq*ar4). (5.6)

For ease of notation write a = a,4= | ® ¢ ® o in H"“E,S". Also write f € H'E,S’
for the class f = ¢ ® 1 ® 1. A further application of (4.6) gives

[a,Sq’al=(1®a®a)-[1,fFF in H°EES 5.7
We will have proved the theorem if we can show that
FI®a® a)- (F*1.f)P#0. (5.8)

We first show that (#*(1, f])* is non-zero. Consider the commutative diagram

Xo(S") ———> E:E,S"

X —_ E,B3X,=BG
where = and p are the projections and ¢ is defined in (5.3). Observe that p = Ex(q)
where g: E.S"— BX, is the projection. It follows from (4.6) and (4.7) that
p*(1, el =[1,f1.
From the definition of ¢ we get c*[1, e] = w. Therefore
71, fP = 7*p*[1, el = m*c*[l. e’ = m*ul.

However u? is non-zero in H®X and =* H'X - H?Xg(S") is obviously an
isomorphism. Thus

F*[1,fl#0.
To show #*(1®a ®a) is non-zero consider the commutative diagram
s = &
ky l l ky
Xs(ST) -—"* E,E,S’
where k; and k; are the inclusions. The map k: can be factorised as follows
(§"x S x(§'x S ———r E,S" % Els’—_;-» EAE,S")
where j, is the inclusion of §"x §7 in E,S” and j, is the inclusion of E.S"x E,§" in
E,E,S’. Using (4.6) and (4.7) we see that
Kl ®a®a)=k(1®a®a)=ta®jta=c@cDc®a,
which is the non-trivial element of H?(S")*. Therefore

¥*(1®a®a)#0.
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To complete the proof of (5.5) note that w*: H2X - H*X(S”) is an isomorphism
and so H2Xs(S") = Z/2. By the Poincaré duality theorem HZ2X(S")= Z[2. As we've
just shown 7*[1, fT* and ¥%(1 ® a ® a) are the non-zero elements in their respective
cohomology groups and so, again by the Poincaré duality theorem, the product
#*[1, fI* - #*(1 ® a ® a) must be non-zero. By (5.8) this completes the proof of (5.5)
and therefore completes the proof of Theorem C.

Referring to note (iii) after Theorem C it is clear that the above proof with only the
obvious alterations shows that the 14-dimensional manifold X5(S’) can be framed to
have Kervaire invariant one. As pointed out after the proof of (5.4), the 6-dimensional
manifold X5(S") cannot be framed.

Referring to the discussion before Lemma 2.7 and that lemma, it can be shown
that QBG:kp)=2Z/2 if k=3mod4, where G =2,[Z%, Therefore the framed
bordism class of X(S7) with framing induced by the Cayley number framing of s’
has order 2.

$6. THE PROOF OF THEOREM D

The notation used is that established at the beginning of §4. We begin by
summarising the information required from §4.

From (4.2), the 2'*'—2 dimensional manifold Y, (S") equipped with a framing
induced by a framing of 57 has Kervaire invariant one if and only if gs(h(g)*y2-)) = 1.
now from (4.5), (4.15) and (4.21)

h(g)*yzo1 = F*gL yro1 = ¥* 21 = 7*(Sq" aws + Sq'bui),

where ay, is defined in (4.18), by, is defined in (4.19) and ¥: Y, (S)— EZ*S7 is the first
map occurring in (4.5).
Using (1.2) we see that

ae(h(g)*y2-1) = ¥*Au
—E,*S’ is the class
Ak', = Qg " Sqlﬂu =* b“ b Sq!bu o Sqlbu . Sq7bt_,
+ Sf;]zbau - 8q°bys + Sq°bys - Sq°bis + Sq'aw, - Sq*bus. (6.1)

2t+1

where A“ EH*

The main result of this section is the following theorem.

6.2 THEOREM. If 2'"'—2—7-2%>2 then the class Ay is decomposable over the
Steenrod algebra. That is Ay, =Zax; where the a;'s are stable primary cohomology
operations with strictly positive degree.

Proof of Theorem D assuming (6.2). Y;_—,,(ST) is a framed 2'*'—2 dimensional
manifold and so all stable primary cohomology operations with strictly positive degree
taking values in H’M’EYGI(S’) are zero. Therefore %Ay, = Za¥*x, = 0.

We now prove (6.2). We will use the notation implicit in (6.1) without further
comment. The proof is a long but straightforward calculation using (4.6)-(4.10).

6.3 LEMMA.
Sq'(by; - Sq’bys) = Sq'byy - Sa’ by,
5q'(Sq’bi; - Sq°bi) = Sa’by; - Sq° by

Proof. Immediate from the Cartan formula and the Adem relations for the
Steenrod squares.

6.4 LEMMA.
Sq'(aw - Sq*be) = Sq'aw; - Sa*bus

Proof. By (4.21), Sq‘bu =zii+ Sq'a. Now (4.20) and the Adem relation
Sq'Sq' =0 show that Sq'(Sq*bi) = 0. The result follows from the Cartan formula.
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6.5 LEMMA.
Sq’by, = Sq°bi, = 0.

Proof. If 1=4 then bys=0, see (4.19), and so the result is trivial. Therefore
assume [ = 5. If k =0 the result is trivial since referring to (4.19) we see that by, = 0.
We proceed by induction, using the definition of by, (4.19), and (4.10):

l —
Sa*bi, =1, 8¢°bi1 ] + (2 2 12)22._[7® Zi-13 60 Zi1s
! —
+ (2 0 13)82'_”@ Sq'z;-,;@Sq'z;,,J.
By the inductive hypothesis Sg’h,_, =0 and by (4.20) Sq'z_,3=0. Finally

J_
(2 2'2)50 mod 2 and 5o

Sq 1bu =0.

That Sq®by, =0 follows from a similar sort of induction using (4.10), (4.20) and the
extra facts that Sg’z;—,3= Sq'z_13=0.

Lemmas 6.3-6.5 show that
Agy =Gy quau + By, (6.6)

where B, is decomposable over the Steenrod algebra. We first deal with the case
I = 4, and since 2'*' =2 —7 - 2* > 2, we must therefore have k = 1. The argument given
at the beginning of (5.5) shows that a,4- Sg’a,s= 0. Therefore (6.6) shows that A, is
decomposable over the Steenrod algebra and so (6.2) is verified in the case [ =4.

For the rest of this section assume [ = 5.

6.7 LEMMA.
ay; - 8qay = (a1 SqPar-1 1+ [ae-1s - S@ @10 1] + [zxorimr * Sq @k-11 Zemraa] + Cry

where Cy, is decomposable over the Steenrod algebra.

Proof. From the definition of a,; and (4.10) one checks that
=1
Sq*ay =(1.Sq%a;_ 1+ 24 e D 2 @ Zecim

(recall | =5). The rest of the calculation is a straightforward exercise in the use of
(4.6). It turns out that

which is decomposable over the Steenrod algebra.
6.8 LEMMA.
S zk14-1* @r-ris Zk-ra-1] = [Ze1y-1 Sqai- 14 Ze-ra-1).
Proof. This is left as an exercise using (4.10) and (4.20).
Lemmas 6.3-6.8 show that in HY '2E,*S’, for [ =35,

A = ay - Sqay = [ak-iy. S@% k1] + [ax-1s - Sqaxy. 1] (6.9)
modulo decomposables over the Steenrod algebra.

We now prove the following result.

6.10 ProposiTion. If 1 =5 then [ai_y1. Sq’ar-v,] is decomposable over the Steenrod
algebra.
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Proof of (6.2) assuming (6.10). The case | =4 has been dealt with after (6.6) so
assume [ = 5. Then (6.9) shows that A, is decomposable over the Steenrod algebra if
and only if ay; - Sq*ay, is decomposable over the Steenrod algebra. However (6.9) and
(6.10) together show that ay, - Sq’ay; is decomposable over the Steenrod algebra if
G141 * Sq*a,-1; is decomposable over the Steenrod algebra. Now an obvious induction
starting from the fact that a,, = 0 for [ >4 (see 4.18) completes the proof.

To prove 6.10 we need to introduce some more cohomology classes. For [ =4 and
k =1 define uy, € H**E,*S inductively, on k, by the following formulae:

2015 : 20-2 7
uy=e in H*?E,S
il Re®o 2 (6.11)

-1
_am+ - i
gy = [1, eyl + 5_‘,3 e ® ziotm ® Zkam in H¥?E*S".
=

6.12 LEMMA. Sq'uy; = zis

Proof. This is the usual sort of induction on k using (4.10) and (4.20) to compute
Sq'uy, and the inductive hypothesis and (4.17) to identify it with z.

Next for [ =5 and k = 1 define v, € H*E;*S’ inductively, on k, by the following
formulae:

vy =0 in H*ES".
(6.13)

=1
v =[L o]+ 2 @7 @ty m @ lip1m in HE'S’.
.

Here uy, is defined in (6.11).
6.14 LEMMA. For k=1 and | =5, Sqa., = Sq°Sq'vi,.
Proof. This is the usual sort of induction on k. Lemma 6.12 is crucial.

Proof of (6.10). If k=1 then a;_,; =0 and the result is trivial. If k >2 then the
following formula holds:

[as-1s Sq*ai-11) = S@°[vi1s Sq" vi-14] + Sq15q 0414, ax-14]

o+ 5¢°5q'(1 ® ve-1y @ ve-10) + Sq° (1@ Sq.,_,,® Sq.,_, ).

The verification of this formula is a straightforward but tedious exercise using (4.10).
This completes the proof of (6.2) and therefore proves Theorem D.

In view of Lemma 6.12 and Theorem 1.2
as(h(g)*y2-0) = gs(F*zus) = ¥*(ues * Sq°u)).

Therefore one might hope to be able to show that 7*(u, - Sq”u,) =0 and possibly
simplify the proof of Theorem D. I was unable to do this, indeed the reason for
introducing the equation zy; = Sq'ay, + Sq*by; was to get around the difficulty arising
from this line of proof.
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§1. INTRODUCTION

LET G BE a topological group. By a G-ANR we mean a separable and metrizable
G-space X with the following property: whenever B is a normal G-space and A is an
invariant closed subspace of B, any G-map A — X can be extended over an invariant
neighbourhood of A in B. When G is a compact Lie group it is known (see (1.4) and
(1.6) of [8]) that any smooth compact manifold on which G acts smoothly is a
G-ANR.

The fixed point set of a G-space X with respect to a subgroup H of G is denoted
by X" For any space A, the maps A— X" correspond precisely to the G-maps
G/H % A— X. It follows. in particular, that if X is 2 G-ANR then X" is an ANR for
all HCG.

When X and Y are G-spaces a G-map f: X = Y determines a map f*: X" » Y¥
of the fixed point sets for all subgroups H C G. If f is a G-homotopy equivalence then
fH is a homotopy equivalence for all H. In Ch. TI of [1] Bredon gives a converse of
this in the case when G is finite, subject to certain restrictions on X and Y (cf. also
Matumoto [5]). The purpose of the present note is to establish

THEOREM (1.1). Let G be a compact Lie group, and let X, Y be G-ANR’s. Then a
G-map f: X - Y is a G-homotopy equivalence if the map f*: X" = Y" is a homotopy
equivalence for all closed subgroups H of G.

CoroLLARY (1.2). Let G be a compact Lie group, and let X be a G-ANR. Then X is
G-contractible if X" is contractible for all closed subgroups H of G.

No such theorems hold if G is not compact: we give an example at the end.

In some applications it is desirable to have pointed versions of these results. These
are immediate consequences, however, since for G-ANR’s a G-homotopy
equivalence which is a pointed G-map is always a pointed G-homotopy equivalence.
This can be seen, for example, by an equivariant version of the argument used in §10
of [3].

The main result of [9] can readily be deduced from (1.2) since if X is the unitary
group of the G-Hilbert space then X H is a product of unitary groups of Hilbert spaces; as
shown in Prop. 3 of [9], and hence contractible by the main result of Kuiper[4].

Suppose that the G-map f: X — Y is a G-fibration, i.e. has the G-homotopy lifting
property for a suitable class of G-spaces. Then f*: X* > Y¥ is a fibration, in a
similar sense, for all closed subgroups H of G, and it seems reasonable to ask whether
this necessary condition for a G-fibration is also sufficient. A result of this kind for G
finite is given by Bredon in II1. 4.1 of[1], but the general question remains open, so far
as we are aware.

§2. PRELIMINARIES
In this section we work in the category Tops of spaces over a given space B. We
regard B X T, for any space T, as a space over B by the first projection. If E is a
space over B with projection p: E— B then any subspace E'C E is regarded as a
space over B with projection p|E’. If A is a subspace of B then E, or E|A denotes
the space p~'A over A with projection p, defined by p. Similarly if ¢: E— F is a map
over B then ¢,: E,— F, denotes the map over A which is given by ¢.
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