CHAPTER 8: THE ELEMENTS OF ARF INVARIANT ONE

1. Introduction

One of the most important open problems in homotopy theory is whether or not there exist elements \(\theta_N \in \pi_{2N+1}^{S} \) of Arf invariant one. These elements arose in the work of Kervaire [26] and Kervaire and Milnor [27] as obstructions in surgery theory. Browder [14] showed that the nonvanishing of these obstructions is equivalent to the elements \(h_2^N \in E_2^{N+1-2,2} = \text{Ext}^2_2(Z_2, Z_2) \) being infinite cycles in the classical Adams spectral sequence for \(\pi_{*}^{S} \). Thus, an element \(\theta_N \in \pi_{2N+1}^{S} \) has Arf invariant one if and only if the secondary cohomology operation \(\Phi_N \) defined by the following Adem relation is nonzero in the mapping cone of \(\theta_N \):

\[
0 = \sum_{i=0}^{N} Sq^{N+1-2i} Sq^{1}.
\]

The first three elements of Arf invariant one are merely \(\eta^2, \nu^2 \) and \(\sigma^2 \). The next two elements of Arf invariant one, \(\theta_4 \in \pi_{30}^{S} \) and \(\theta_5 \in \pi_{62}^{S} \), have been shown to exist using the classical Adams spectral sequence [37], [11]. It is not known whether \(\theta_N \) exists for \(N \geq 6 \). The reader can find a more detailed exposition of this problem in [12] and [13].

In Section 2 we show that the element \(A[30] \in \pi_{30}^{S} \) has Arf invariant one by calculating that the secondary operation \(\Phi_4 \) is nonzero in the mapping cone of \(A[30] \). In Section 3 we identify \(\theta_5 \) as \(A[62,1] \) by showing that \(\theta_4^2 = 0 \) using an argument of Mahowald based upon a generalization of [34A, Theorem 16]. The construction of Barratt, Jones and Mahowald [11] shows that \(\theta_5 \) exists but does not determine the order of \(\theta_5 \). The argument of Section 3 shows that there are choices of \(\theta_5 \) of order two.
In [35] Mahowald showed that the elements \(h_1 \eta_1 \in E_2^{2,2} \) of the Adams spectral sequence are infinite cycles which are represented by the elements \(\eta_1 \in E_2^{2,2} \).

In Section 2 we identify \(\eta_5 \) as \(A[32,1] \). In Section 3, we identify \(\eta_6 \) as \(B[64,1] \).

2. The Existence of \(\theta_4 \)

Recall from Theorem 5.3.10 that \(\pi_3^S = Z A[30] \) and \(A[30] = d^{12}(2\sigma M_1^{12}) \). We will show that the secondary operation \(\psi_4 \) is nonzero in the mapping cone of \(A[30] \).

It follows that \(A[30] = \theta_4 \) has Arf invariant one. We will assume the definitions and basic properties of secondary cohomology operations and functional cohomology operations [47].

Let \(f: S^{23} \rightarrow BP^{(16)}(14) \) be the attaching map of the cell represented in homology by \(<M_1^4>^3 \). This map has image in the 16-skeleton because \(<M_1^4>^3 \) survives to \(E_8 \). Let \(i: BP^{(14)} \rightarrow BP^{(16)} \) be the natural inclusion. Since \(d^8(2\sigma<M_1^4>^3) = 0 \), there is a lifting \(F \) of \(2\sigma f \) to \(BP^{(14)} \):

\[
\begin{array}{ccc}
S^{23} & \xrightarrow{1} & BP^{(14)} \\
\downarrow{F} & & \downarrow{BP^{(16)}} \\
2\sigma f & \xrightarrow{i} & BP^{(16)}
\end{array}
\]

Figure 8.2.1: Definition of F

The next step is to define a map \(G: \Sigma^7 C_f \rightarrow C_f \). We begin by defining

\[
G_1 = G|\Sigma^7 BP^{(8)}: \Sigma^7 BP^{(8)} \rightarrow BP^{(8)}
\]

as the composite of the projection map

\[
P: \Sigma^7 BP^{(8)} \rightarrow \Sigma^7 BP^{(8)} / \Sigma^7 BP^{(6)} = S^{15} V S^{15}
\]

followed by \(g \), where the first sphere is represented by \(<M_1^4> \) in homology, the second sphere is represented by \(M_1^2 \) in homology and \(g \) is the attaching map of the cell represented by \(<M_1^4>^2 \) in homology. Since \(<M_1^4>^2 \) survives to \(E_8 \) and \(d^8(<M_1^4>^2) = 2\sigma<M_1^4> \), the following diagram commutes:
\[\Sigma^7 \text{BP}(6) \quad \xrightarrow{G_1} \quad \text{BP}(8) \]

\[\xrightarrow{P} \]

\[\Sigma^7 \text{BP}(8) / \Sigma^7 \text{BP}(6) = S^{15} \vee S^{15} \xrightarrow{2\sigma \vee \ast} \text{BP}(8) / \text{BP}(6) = S^8 \vee S^8 \]

FIGURE 8.2.2: Definition of G_1

P' is the natural projection map above. Now define \(G_2 : \Sigma^7 \text{BP}(16) \to \text{BP}(16) \) as the composite of the projection map

\[P' : \Sigma^7 \text{BP}(16) \to \Sigma^7 \text{BP}(16) / \Sigma^7 \text{BP}(14) = S^{23} \vee 3S^{23} \]

followed by \((g \land \alpha)' : S^{15} \wedge S^8 \to \text{BP}(16)\). Here the first copy of \(S^{23} \) is represented by \(<M^4_1>^3 \) in homology and \(\alpha : (D^8, S^7) \to (\text{BP}(8), S) \) represents \(<M^4_1> \). Also,

\((g \land \alpha)' : S^{15} \wedge S^8 \to \text{BP}(16) \) is an extension of

\[S^{15} \wedge D^8 \xrightarrow{g\land\alpha} \text{BP}(8) \wedge \text{BP}(8) \xrightarrow{\nu} \text{BP}(16), \]

thinking of \(D^8 \) as the upper hemisphere of \(S^8 \). This extension to \(S^{15} \) smash the bottom hemisphere exists as a map into \(\text{BP}(8) \) because \(2\sigma^2 = 0 \) in \(\pi^S_8 \). The top square in Figure 8.2.3 commutes because \(G_2 \) restricts to \(2\sigma \) on \(\Sigma^7 \) of the cell \(C \) represented by \(<M^4_1>^2 \) in homology. Thus, the map \(G_3 \) must exist making the bottom square commute.

Now \(G_3 \) maps all cells into \(\text{BP}(14) \) except for the cell \(\Sigma^7 C \), and \(G_2 \) on this cell is \(2\sigma \land 1 \). In \(\Sigma^7 C \), \(CE^7 S^{23} \) is attached to this cell by \(\Sigma^7 \nu \). Therefore \(G_3 \) on this cell is \(2\sigma \land \nu \) which, as in Figure 8.2.1, lifts to \(\text{BP}(14) \). Thus \(G_3 \) lifts to a map \(G \).

\[\Sigma^7 S^{23} \xrightarrow{1} \Sigma^7 \text{BP}(16) \]

\[\xrightarrow{G_2} \text{BP}(16) \]

\[\xrightarrow{G_3} \text{BP}(16) \]

\[\xrightarrow{G} \]

\[\Sigma^7 \text{BP}(16) \xrightarrow{G_2} \text{BP}(16) \]

\[\xrightarrow{G_3} \text{BP}(16) \]

\[\xrightarrow{G} \]

FIGURE 8.2.3: Definition of G
In $H^*(G; \mathbb{Z}_2)$, let $u(X)$ denote the element dual to $X \in H_*(G; \mathbb{Z}_2)$. Let $Y \in H^i(G; \mathbb{Z}_2)$ denote the element determined by the first sphere in Figure 8.2.2. By the definition of G, Y represents a cell with the same attaching map as $<M^4_1>^2$. Therefore, $Sq^1 u(1) = u(Y)$. Thus, the functional secondary cohomology operation Sq^6 is defined on $u(1) \in H^0(G; \mathbb{Z}_2)$ and equals $S^7 u(M^4_1) \in H^8(G; \mathbb{Z}_2)$. By the Peterson-Stein formula: $G \circ \phi^*(u(1))$

$$= Sq^{31} Sq^6(u(1)) + Sq^{30} Sq^6(u(1)) + Sq^{28} Sq^6(u(1)) + Sq^{24} Sq^6(u(1)) + Sq^{16} Sq^6(u(1)).$$

Since $H^k(G; \mathbb{Z}_2) = 0$ for $k = 0, 1, 3$, we must have $Sq^1 u(1) = 0$, $Sq^2 u(1) = 0$ and $Sq^4 u(1) = 0$. Since $G_1|\Sigma^7 BP(6) = \ast$, $Sq^8 u(1)$ must be 0 not $S^7 u(1)$.

Thus, $G \circ \phi^*(u(1)) = Sq^6 Sq^6(u(1)) = Sq^6 (S^7 u(M^4_1)) = S^7 u(<M^4_1>^3) \neq 0$. Thus, $\phi^*(u(1)) \neq 0$ in $H^31(G; \mathbb{Z}_2)$. Note that there is a unique top dimensional cell of degree 31 in C_F which determines a nononzero element $\tau \in H^31(G; \mathbb{Z}_2)$. Hence $\tau = \phi^*(u(1)) \neq 0$. Since $d^{12}(2\sigma M^1_1) = A[30]$ and F represents the boundary of $2\sigma M^1_1$, the triangle in the following diagram must commute up to homotopy.

Therefore, there is an induced map J making the square commute.

\[(**) \]

F \downarrow $BP^{(14)}$ \rightarrow C_F

$\downarrow J$

$A[30] \downarrow S$

\rightarrow $C_A[30]$

Now $\phi^*(u(1)) = \phi^*J^*(u(1)) = J^* \phi^*(u(1)) = J^*(\tau) \neq 0$. Thus, $A[30]$ must have Arf invariant one. We have thus proved the following theorem.

Theorem 8.2.1 $A[30]$ has Arf invariant one.

We derive several Toda brackets involving elements related to θ_4. The first Toda bracket below was proved by Hoffman [24]. We give a proof using our spectral sequence.
THEOREM 8.2.2 (a) \(\theta_4 = A[30] \in <\sigma, 2\sigma, 2\sigma, \sigma> \)

(b) \(\nu \theta_4 = \nu A[30] \in <C[18], \sigma, 2\sigma> \)

(c) \(\theta_4 = A[30] \in <\sigma, 2\sigma, \sigma^2, 2> = <\sigma^2, 2, \sigma^2, 2> \)

(d) \(\eta \theta_4 = \eta A[30] \in <A[16], 2, \sigma^2> \)

PROOF. (a) Represent \(<M_1^{-1}^{-1}^\theta>^2 \) by \(\mu_8 \) such that \(\partial(\mu_8) = (\sigma \wedge 2\mu_4) \cup (B \sigma_2 \sigma) \).

Since \(2^4 \sigma_2 = 0 \), \(\sigma A[14] = 0 \) and \(\sigma \gamma_1 = 0 \), it follows that \(<\sigma, 2\sigma, 2\sigma> = 2<\sigma, 2\sigma, \sigma> = 0 \). Thus, \(2\sigma_1^{12} \in E_{24}^{24} \) is represented by

\[
M = (\mu_4 \wedge \sigma \wedge 2\mu_6) \cup (B \wedge \sigma_6) \cup (\mu_4 \wedge B \sigma_2 \sigma \wedge 2\mu_4) \cup (B \sigma_2 \sigma_2 \wedge \mu_4) \]

\[
\cup (\mu_4 \wedge B \sigma_2 \sigma_2 \sigma_2) \]

because \(\partial M = (B \wedge B \sigma_2 \sigma) \cup (B \sigma_2 \sigma_2 \wedge \sigma) \cup (\sigma \wedge B \sigma_2 \sigma_2 \sigma) \). Since \(d^4(2\sigma_1^{12}) = A[30] \), \(\partial M \) represents \(A[30] \) and clearly \(\partial M \in <\sigma, \sigma^2, \sigma^2, \sigma> \).

(b), (c) The four-fold Toda bracket \(<\sigma, 2\sigma, \sigma^2, 2> \) is defined by

Theorem 2.2.7(a) because \(<\sigma, 2\sigma, \sigma^2> \in \pi_2^S = 0 \) and \(<2\sigma, \sigma^2, 2> = \sigma 2\sigma + 2^4 \sigma_2^S \)

\[
= \sigma(\sigma^2) = 0. \text{ Now } \nu A[30] \in \nu <\sigma, 2\sigma, 2\sigma, \sigma> \subset <\nu, \sigma, 2\sigma, 2\sigma >, \sigma > = <C[18], 2\sigma, \sigma> \).

Since \(\text{Cok} J_{20} = \nu^{23} \nu[20] \), \(\nu A[30] \in <C[18], \sigma, 2\sigma> \subset <C[18], \sigma^2, 2> \)

\[
= <\nu, \sigma, 2\sigma, \sigma^2, 2> = \nu <\sigma, 2\sigma, \sigma^2, 2, 2> \text{. Thus, } <\sigma, 2\sigma, \sigma^2, 2> \text{ contains } A[30]. \text{ Note}\]

that \(<\sigma^2, 2, \sigma^2, 2> \) is defined by Theorem 2.2.7(a) because \(<\sigma^2, 2, \sigma^2> \in \pi_2^S = 0 \) and \(<2, \sigma^2, 2> = \sigma \sigma^2 = 0. \text{ Now } <\sigma^2, 2, \sigma^2, 2> \subset <\sigma, 2\sigma, \sigma^2, 2> = \{A[30]\}. \)

(d) \(\eta A[30] \in \eta <\sigma, 2\sigma, 2\sigma, \sigma> \subset <\eta, 2, \sigma^2, 2\sigma, \sigma> = <A[16], 2\sigma, \sigma> + <\eta \gamma_1, 2\sigma, \sigma>. \text{ Now}\)

\(<\eta \gamma_1, 2\sigma, \sigma> \subseteq \eta <\gamma_1, 2\sigma, \sigma>. \text{ Since } \nu <\gamma_1, 2\sigma, \sigma> = <\nu, \gamma_1, 2\sigma, \sigma> = 0, \text{ }<\gamma_1, 2\sigma, \sigma> \text{ can not}

\text{equal } A[30] \text{ and must therefore equal zero. It follows that } <\eta \gamma_1, 2\sigma, \sigma> = \eta \gamma_1 \sigma \sigma^2 + \sigma \sigma^2 \sigma = \eta \xi \text{ where } \nu \xi = 0. \text{ Thus, } <\eta \gamma_1, 2\sigma, \sigma> = 0 \text{ and}

\(\eta A[30] \in <A[16], 2\sigma, \sigma> \). \]

We conclude this section by identifying the Mahowald element \(\eta_5 \in \pi^S_{32} \) as \(A[32, 1] \).
THEOREM 8.2.3 Let η_5 be any element of π^S_{32} which projects to $h_5 h_5$ in $E_2^{32,2}$ of the Adams spectral sequence. Then η_5 projects to $A[32,1]$ in $E_4^{24,0,32}$ of the Atiyah-Hirzebruch spectral sequence.

PROOF. From the computation of E_2 of the Adams spectral sequence by Tangora [59], it follows from the fact that $h_5 h_5$ is an infinite cycle that $h_5^3 h_5$ is a nonbounding infinite cycle. Thus, if η_5 is any element that projects to $h_5 h_5$ then $\eta_5^2 \neq 0$. Since $\eta_5^2 \pi^S_{32} = Z_2 \eta^2 A[32,1]$ for any choice of $A[32,1]$ modulo $Z_2 A[32,2] \oplus Z_2 A[32,3] \oplus Z_2 \eta_3$, it follows that $\eta_5 \in A[32,1] + (Z_2 A[32,2] \oplus Z_2 A[32,3] \oplus Z_2 \eta_3)$. Now the theorem follows from the observation that $Z_2 A[32,2] \oplus Z_2 A[32,3] \oplus Z_2 \eta_3$ projects to zero in $E_4^{24,0,32}$ of the Atiyah-Hirzebruch spectral sequence.

3. The Existence of θ_5

In this section we show that $A[62,1]$ has Arf invariant one and is thus entitled to be denoted as θ_5. We also identify the Mahowald element η_6 as $B[64,1]$. In addition, we derive a few miscellaneous results which are relevant to the Arf invariant problem. We begin with the following well known lemma which can be proved from a computation of $\text{Ext}_y(Z_2, Z_2)$ as the homology of the Λ-algebra.

LEMMA 8.3.1 The following elements are nonzero in $\text{Ext}_y(Z_2, Z_2)$:

(a) h_N^2 for $N \geq 4$;
(b) $h_0 h_N^2$ and $h_1 h_N^2$ for $N \geq 3$;
(c) $h_1 h_N^2$ for $N \geq 4$;
(d) $h_1^2 h_N^2$ for $N \geq 5$.

Adams's proof [2] of the nonexistence of elements of Hopf invariant one in degrees 2^{N-1}, $N \geq 4$, is equivalent to the following differentials in the Adams spectral sequence. The elements listed in Lemma 8.3.1 and the differentials
of Theorem 8.3.2 for \(N \geq 4 \) are depicted in Figure 8.3.1. Note that there are other elements in the bidegrees of that figure which are not depicted.

THEOREM 8.3.2 \(d^2(h_N) = h_N h_{0, N-1}^2 \) for \(N \geq 4 \).

![Diagram](image)

FIGURE 8.3.1: Part of \(E^2 \) of the Adams Spectral Sequence (\(N \geq 6 \))

The following lemmas will be used to identify \(\Theta_S \) as \(A[62,1] \). The entire argument is based upon ideas of Mahowald [34A] and is a rewording of a detailed proof which he sent to me.

LEMMA 8.3.3 \(<\sigma^2, 2, A[30]> \in \mathbb{Z}_2(\eta C[44]) \oplus \mathbb{Z}_2(8D[45]) \)

PROOF. Note that \(\eta^2 <\sigma^2, 2, A[30]> = \sigma^2 <2, A[30], \eta^2 > \in \sigma^2 \pi^S_{33} = 0 \). Also, \(\nu^2 <\sigma^2, 2, A[30]> = \sigma^2 <2, A[30], \nu^2 > \in \sigma^2 \pi^S_{37} = \sigma(4C[44]) = 0 \). In addition, \(2 <\sigma^2, 2, A[30]> = \sigma^2 <2, A[30], 2> = 0 \). The only elements of \(\pi^S_{45} \) which satisfy these three conditions are \(\mathbb{Z}_2(\eta C[44]) \oplus \mathbb{Z}_2(8D[45]) \).

LEMMA 8.3.4 If \(\xi \in \pi^S_{45} \) and \(\xi A[36] = 0 \) then

\[\xi C[44] \in <\eta \xi, \eta A[30], \nu, \sigma>. \]
PROOF. By Theorem 2.4.6(a), if \(\langle \eta, \eta A[30], \nu, \sigma \rangle \) were defined then it would contain \(C[44] \). Now \(\langle \eta A[30], \nu, \sigma \rangle \supset A[30] \langle \eta, \nu, \sigma \rangle = 0, \eta A[30] \cdot \pi_{11}^S = 0 \) and \(\sigma \cdot \pi_{35}^S = 0 \). Thus, \(\langle \eta A[30], \nu, \sigma \rangle = 0 \). However, \(A[36] \in \langle \eta, \eta A[30], \nu \rangle \). Since \(\xi A[36] = 0, \eta \xi A[30], \nu, \sigma \rangle \) is defined by Theorem 2.2.7(b). Thus, \(\xi C[44] \in \langle \eta, \eta A[30], \nu, \sigma \rangle \).

Lemma 8.3.5
(c) \(A[16]C[44] = 0 \).

Proof. (a) \(A[16]A[36] \in A[36] \langle \eta, 2, \sigma^2 \rangle = \langle A[36], \eta, 2, \sigma^2 \rangle \in \sigma^2 \cdot \pi_{38}^S = 0 \).
(b) \(\eta A[16]A[30] \in \eta A[30] \langle \eta, 2, \sigma^2 \rangle \subset 0,2, \sigma^2 \rangle = 0, \pi_{33}^S = 0 \).
(c) Since \(A[16]A[36] = 0, A[16]C[44] \in \langle \eta A[16], \eta A[30], \nu, \sigma \rangle \supset 0, \eta, \nu, \sigma \rangle \).

(Note that \(\eta A[16]A[30], \eta, \nu, \sigma \rangle \) is defined by Theorem 2.2.7(b) because \(0 \in \langle \eta A[16]A[30], \eta, \nu \rangle \) and \(0 = \langle \eta, \nu, \sigma \rangle \).) Since \(\sigma \cdot \pi_{53}^S = 0, A[16]C[44] \in \pi_{48}^S, \nu, \sigma \rangle + \eta A[16], \pi_{53}^S + \langle \eta A[16], \pi_{35}^S, \sigma \rangle = \langle \alpha_6, \nu, \sigma \rangle + \eta A[16], \nu A[14]C[20], \sigma \rangle = \eta A[16], \nu A[32, 3], \sigma \rangle + \eta A[16], \beta_4, \sigma \rangle = \langle \alpha_6, \nu, \sigma \rangle + \eta A[16], \nu A[20], 0 \rangle + A[16]A[30, 3] \langle \eta, \nu, \sigma \rangle + A[16] \langle \eta, \beta_4, \sigma \rangle = \langle \alpha_6, \nu, \sigma \rangle \). By Theorem 4.2.3 and Figure 4.2.2, it follows that \(\langle \alpha_6, \nu, \sigma \rangle \) projects to an element of filtration degree at least 26 in the Adams spectral sequence. The only such element is \(h_0^2 P_g = d_0^2 (h_0 P_4 k) \). Thus, \(0 = \langle \alpha_6, \nu, \sigma \rangle = A[16]C[44] \).

Lemma 8.3.6 \(A[30]^2 = 0 \)

Proof. \(A[30]^2 \in A[30] \langle 2, \sigma^2, 2, \sigma^2 \rangle \subset \langle \eta C[44], 2, \sigma^2 \rangle \supset C[44], \eta A[30], 2, \sigma^2, 2, \sigma^2 \rangle \subset 0, \eta A[30], 2, \sigma^2, 2, \sigma^2 \rangle \supset \sigma \cdot \pi_{53}^S = 0 \). Since \(\eta A[36] = 0 \), \(A[30]^2 \in \eta C[44] \cdot \pi_{15}^S + 8 D[45], \pi_{35}^S + \sigma^2 \cdot \pi_{48}^S = \eta \gamma C[44] \in \gamma \langle \eta, \eta A[30], \nu, \sigma \rangle \supset \langle \eta^2, \eta A[30], \nu, \sigma, \gamma \rangle = \langle \eta^2, A[30], \eta, \nu, \sigma, \gamma \rangle \).
\[
= \eta^2, A[30], 0 = \eta^2, \pi_{58} = 0. \text{ Thus, } A[30]^2 \in \langle \nu, \sigma, \gamma \rangle \cdot \pi_{34}^S \subset \{\nu^2 C[20], \eta \alpha \}, \pi_{34}^S
\]
\[
= \eta \alpha^3 A[14] C[20] = \eta A[14] C[20] = (8 \sigma, 2, \alpha^2) = \eta A[14] \alpha_2 C[20], 8 \sigma, 2 \in (\eta \cdot \pi_{31}^S) \cdot \pi_{28}^S
\]
\[
= (\eta \gamma_3)(A[8] C[20]) = 0. \]

Theorem 8.3.7

are all the elements of \(\pi_{62}^S \) of Arf invariant one. In particular, there are choices of \(\theta_5 \) of order two.

Proof.

Since \(\theta_4 = A[30] \) exists, \(2 \theta_4 = 0 \) and \(\theta_4^2 = 0 \), it follows from [12, Theorem 2.1] that \(\theta_5 \) exists and has order two. From Figure 8.3.1, we see that any element \(\theta_5 \) of Arf invariant one satisfies \(\eta^2 \theta_5 \neq 0 \). Since

\[\eta^2 \cdot \pi_{62}^S = Z_2^2 A[62, 1] \oplus Z_2^2 A[62, 4], \text{ Span } \{A[62, 2], A[62, 3], B[62], \eta^2 B[60] \} \]

has Adams filtration at least three. Since

and \(C[20] = d^{12}(\nu^2 M_{12}^2) \), \(\nu A[62, 4] = C[20] A[45, 1] \). From Figure 8.3.1, \(\nu \theta_5 \) is nonzero and is represented in the Adams spectral sequence by \(h_2 h_5^2 \) in filtration degree three while \(C[20] A[45, 1] \) has Adams filtration at least nine. Thus, \(A[62, 4] \) has Adams filtration at least three. Now all the elements of \(\{A[62, 2], A[62, 3], A[62, 4], B[62], \eta^2 B[60] \} \) have Adams filtration at least three. Therefore, all the elements of

have Arf invariant one.

Next we identify the Mahowald element \(\eta_6 \) in terms of the Atiyah-Hirzebruch spectral sequence. Recall that \(\eta_6 \) denotes any element of \(\pi_{64}^S \) which projects to \(h_2 h_6^2 \) in \(E_{64, 2}^1 \) of the Adams spectral sequence.
THEOREM 8.3.8 (a) Any choice of η_6 projects to $B[64,1]$ in $E_{0,64}^{54}$ of the Atiyah-Hirzebruch spectral sequence.

(b) All the choices of η_6 are

(c) All the values of $2\eta_6$ are $\eta_5^2 + Z_2 \eta^2 A[62,4]$, and $4\eta_6 = 0$.

(d) There are choices of η_5 and η_6 such that $2\eta_6 = \eta_6^2$.

PROOF. Since $A[64,1], A[64,2], A[64,3], B[64,2], \eta^2 A[62,1]$ and $\eta_5 \gamma$ project to zero in $E_{2,64}^{54}$ of the Adams spectral sequence, all the choices for η_6 are

All of these elements project to $B[64,1]$ in $E_{0,64}^{54}$. Moreover, $2\eta_6 = 2B[64,1] + 2sB[64,2] = \eta^2 A[62,1] + s\eta^2 A[62,4] = \eta_5^2 + s\eta^2 A[62,4]$ and $4\eta_6 = 0$. Note that η_5^2 projects to h_1^2 in the Adams spectral sequence. Thus, η_5^2 is not zero, and by Mahowald [36] there are choices of η_5 and η_6 such that $2\eta_6 = \eta_5^2$.\]