Browder's theorem and manifolds with corners

Duality and the Wu classes. The "Spanier-Whitehead dual" of a spectrum X is the function spectrum (in which S denotes the sphere spectrum) $D X=F(X, S)$ (which exists by Brown representability). It comes equipped with an "evaluation" pairing $D X \wedge X \rightarrow S$.

Write $H_{*}(-)$ for homology with \mathbb{F}_{2} coefficients. If X is finite, then the induced pairing $H_{-*}(D X) \otimes H_{*}(X) \rightarrow \mathbb{F}_{2}$ is perfect, so there is an isomorphism

$$
H_{i}(X) \rightarrow \operatorname{Hom}\left(H_{-i}(D X), \mathbb{F}_{2}\right)
$$

which may be rewritten using the universal coefficient theorem as

$$
\operatorname{Hom}\left(H^{i}(X), \mathbb{F}_{2}\right) \rightarrow H^{-i}(D X)
$$

A Steenrod operation θ induces a contragredient action on the left, which coincides with the action of $\chi \theta$ on the right. Here χ is the Hopf conjugation on the Steenrod algebra. The map χ is an algebra anti-automorphism and an involution, and is characterized on the total Steenod square by the identity of operators

$$
\chi \mathrm{Sq}=\mathrm{Sq}^{-1}
$$

because of the form of the Milnor diagonal.
If M is a closed smooth m manifold and $X=\Sigma^{\infty} M_{+}$, then the Thom spectrum M^{ν} of the stable normal bundle (normalized to have formal dimension $-m$) furnishes the Spanier-Whitehead dual of X. This is "Milnor-Spanier" or "Atiyah" duality. Poincaré duality is given by the composite isomorphism

$$
H^{m-i}(M) \xrightarrow{-\cup U} H^{-i}\left(M^{\nu}\right) \cong H_{i}(M)
$$

where $U \in H^{-m}\left(M^{\nu}\right)$ is the Thom class.
The rather boring collapse map $M_{+} \rightarrow S^{0}$ dualizes to a much more interesting map $\iota: S^{0} \rightarrow M^{\nu}$, which in cohomology induces the map

$$
\iota^{*}: x \cup U \mapsto\langle x,[M]\rangle
$$

By Poincaré duality, for each k there is a unique class $v_{k} \in H^{k}(M)$ such that for any $x \in H^{m-k}(M),\left\langle\mathrm{Sq}^{k} x,[M]\right\rangle=\left\langle x v_{k},[M]\right\rangle$. By separating connected components of M, it follows that in fact $\mathrm{Sq}^{k} x=x v_{k}$. Note right off that if $k>n / 2$ then $v_{k}=0$, by the instability of the action of the Steenrod algebra.

Wen-Tsün Wu proved that the element v_{k} is a characteristic class. This follows from the fact that ι^{*} commutes with Steenrod operations:

$$
\iota^{*}(\operatorname{Sq}(x \cup U))=\underset{1}{\operatorname{Sq}\langle x,[M]\rangle=\langle x,[M]\rangle, ~}
$$

since the degree zero part of Sq is 1 . But by Wu's definition of the Stiefel-Whitney classes and the Cartan formula,

$$
\operatorname{Sq}(x \cup U)=(\operatorname{Sq} x) \cup \operatorname{Sq} U=(\operatorname{Sq} x) w \cup U
$$

so

$$
\langle(\operatorname{Sq} x) w,[M]\rangle=\langle x,[M]\rangle
$$

Now replace x by the class $\frac{x}{\mathrm{Sq}^{-1} w}$, to see that the total Wu class is

$$
v=\frac{1}{\mathrm{Sq}^{-1} w}
$$

When applied to the normal bundle of a manifold, the Whitney sum formula gives

$$
\operatorname{Sq} v(\tau)=w(\nu)
$$

where τ is the tangent bundle of the manifold.
Change of framing. A "framing" of a manifold M^{m} is an embedding $i: M \hookrightarrow \mathbb{R}^{m+k}$ together with a trivialization of the normal bundle $t: \nu_{i} \xrightarrow{\cong} \underline{k}_{M}$.

Any two embeddings of M in large codimension are isotopic, and so we can stabilize to form the set of stable framings of a manifold.

A framing t determines an isomorphism of Thom spaces $M^{\nu_{i}} \xrightarrow{\cong} \Sigma^{k} M_{+}$. A stable framing of M determines a homotopy equivalence $M^{\nu} \rightarrow$ $\Sigma^{-m} M_{+}$, showing that the spectrum $\Sigma^{\infty} M_{+}$is self-dual (up to a shift of dimension). The framing can be thought of as a fiberwise isomorphism from the normal bundle to the k plane bundle over a point, so stably we get a map $t: M^{\nu} \rightarrow S^{-m}$. The composite $t \iota: S^{0} \rightarrow S^{-m}$ is the stable homotopy class corresponding to the framed manifold (M, t).

Let $m=2 n$. An element $x \in H^{n}(M)$ can be thought of as a homotopy class of maps $M_{+} \rightarrow K_{n}$, and so determines an element

$$
S^{2 n} \rightarrow \Sigma^{\infty} M_{+} \rightarrow \Sigma^{\infty} K_{n}
$$

of the stable homotopy group $\pi_{2 n}\left(K_{n}\right)$. This group is of order 2 , so the framing determines a map

$$
q_{t}: H^{n}(M) \rightarrow \mathbb{F}_{2}
$$

This is the Browder-Brown definition of the quadratic refinement of the intersection pairing determined by a framing.

The "gauge group" of smooth maps from M to $O(k)$ acts transitively on framings (with respect to this embedding), and the group $K^{-1}(M)=[M, O]$ acts transitively on the set of stable framings.

Proposition. (Brown [3], 1.18) Let (M, t) be a framed $2 n$ manifold, and let $f: M \rightarrow O$. Then

$$
q_{f t}(x)=q_{t}(x)+\left\langle x \cdot f^{*} \bar{v}_{n+1},[M]\right\rangle
$$

were \bar{v}_{n+1} denotes the image in $H^{n}(O)$ of v_{n+1} under the map

$$
\omega: \Sigma O \rightarrow B O
$$

adjoint to the equivalence $O \rightarrow \Omega B O$.
Let $\mathbb{R} P_{0}^{\infty}$ denote projective space with a disjoint basepoint adjoined, and let $\lambda: \mathbb{R} P_{0}^{\infty} \rightarrow O$ be the (pointed) map sending a line to the reflection through the hyperplane orthogonal to that line.

Lemma. The maps $\Sigma \mathbb{R} P_{0}^{\infty} \xrightarrow{\lambda} \Sigma O \xrightarrow{\omega} B O$ induce maps fitting into the commutative diagram

Thus λ^{*} is bijective on the image of ω^{*}, and $\lambda^{*} \bar{w}=(1+t)^{-1}$ where t generates $H^{1}\left(\mathbb{R} P_{0}^{\infty}\right)$. Since $\mathrm{Sq} t=t+t^{2}=t(1+t)$,

$$
\operatorname{Sq} t^{2^{k}-1}=t^{2^{k}-1}\left(1+t+\cdots+t^{2^{k}-1}\right)=t^{2^{k}-1}+\cdots+t^{2^{k+1}-2}
$$

and hence

$$
\mathrm{Sq}\left(1+t+t^{3}+t^{7}+\cdots\right)=(1+t)^{-1}
$$

Now $v \mathrm{Sq}^{-1} w=1$ gives on indecomposables $\bar{v}=\mathrm{Sq}^{-1} \bar{w}$. Thus

$$
\lambda^{*} \bar{v}=\lambda^{*} \mathrm{Sq}^{-1} \bar{w}=\mathrm{Sq}^{-1}(1+t)^{-1}=1+t+t^{3}+t^{7}+\cdots .
$$

So $\bar{v}_{k}=0$ unless k is a power of 2 .
It follows that the quadratic form of a framed $2 n$ manifold is independent of the framing unless n is of the form $2^{k}-1$, and that the Kervaire invariant is too.

Theorem. In positive dimensions, every framed manifold is framed bordant to an odd multiple of a reframed framed boundary.

John Jones and Elmer Rees [4] observed the following:
Corollary. The Kervaire invariant of framed manifolds is nonzero at most in dimensions of the form $2\left(2^{k}-1\right)$.

The theorem is a reformulation of the Kahn-Priddy theorem due to Nigel Ray [8]. There is a commutative diagram

where $\bar{\lambda}$ sends a line to composite of reflection through the orthogonal hyperplane with a fixed reflection. The Kahn-Priddy theorem asserts that the composite $Q \mathbb{R} P^{\infty} \rightarrow Q_{0} S^{0}$ has a section after localizing at 2 , so the induced map $\bar{\pi}_{*}(S O) \rightarrow \pi_{*}$ is surjective in positive dimensions after tensoring with $\mathbb{Z}_{(2)}$. A map $f: S^{n} \rightarrow S O$ allows us to reframe the trivially framed n sphere, and $J f \in \pi_{n}$ is represented by that new framed manifold. This is the " J-homomorphism." An element of $\bar{\pi}_{n}(S O)$ is represented by a framed boundary M^{n} together with a map $f: M \rightarrow S O . \hat{J}$ is the "stable J-homomorphism." Its image in π_{n} is represented by M with the new framing; so the image is the set of reframed framed boundaries.

The Adams spectral sequence. An "Adams tower" for a spectrum X is a diagram

in which each " L " is a cofiber sequence, each I^{s} is a mod 2 generalized Eilenberg Mac Lane spectrum, and each map labeled k induces a monomorphism in homology. The Adams spectral sequence is associated to the exact couple obtained by applying homotopy to this
diagram. In it, then, under some finite type assumptions,

$$
E_{1}^{s, t}=\pi_{s+t}\left(I^{s}\right)=\operatorname{Hom}_{A^{*}}^{t}\left(H^{*}\left(I^{s}\right), \mathbb{F}_{2}\right)
$$

The long exact sequences induced in cohomology are short exact, so

$$
0 \leftarrow H^{*}(X) \leftarrow H^{*}\left(I^{0}\right) \leftarrow H^{*}\left(\Sigma I^{1}\right) \leftarrow \cdots
$$

is a projective resolution and

$$
E_{2}^{s, t}=\operatorname{Ext}_{A^{*}}^{s, t}\left(H^{*}(X), \mathbb{F}_{2}\right) \Longrightarrow \pi_{t-s}(X)_{\hat{2}}
$$

When $X=S$ we can start to compute these groups. $E_{2}^{0, *}$ is \mathbb{F}_{2} concentrated in degree $0 . E_{2}^{1, *}$ is dual to the module of indecomposables in A^{*}, so is generated by classes h_{i} with $\left\|h_{i}\right\|=\left(1,2^{i}\right) . \quad E_{2}^{2, *}$ was computed by Adams right away; it has as basis the set

$$
h_{i} h_{j} \quad, \quad 0 \leq i \text { and either } i=j \text { or } i+2 \leq j
$$

Very few of these elements survive in the Adams spectral sequence. The Hopf invariant one theorem amounts to the assertion that h_{i} survives only for $i \leq 3: h_{0}$ survives to $2 \iota, h_{1}$ to η, h_{2} to ν, and h_{3} to σ. (In fact Adams proved that for $i>3, d^{2} h_{i}=h_{0} h_{i-1}^{2}$.)

In $s=2$, the only survivors are:

$$
h_{0} h_{2}, \quad h_{0} h_{3}, \quad h_{2} h_{4}, \quad h_{1} h_{j} \text { for } j \geq 3, \quad \text { and possibly } \quad h_{i}^{2}
$$

The class $h_{1} h_{j}$ survives to Mahowald's class $\eta_{j} \in \pi_{2 j}$. For $j \leq 3$ the classes h_{i}^{2} survive to $4 \iota, \eta^{2}, \nu^{2}$, and σ^{2}. After that things get trickier.

Theorem. (Browder [2]) Let κ denote the functional on $\operatorname{Ext}_{A^{*}}^{2, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ which is nonzero on h_{i}^{2} but zero otherwise. In dimension $2 n>0$, the Kervaire invariant can be identified with the "edge homomorphism"

$$
\pi_{2 n} \cong F^{2} \pi_{2 n} \rightarrow F^{2} \pi_{2 n} / F^{3} \pi_{2 n} \cong E_{\infty}^{2,2 n+2} \hookrightarrow E_{2}^{2,2 n+2} \xrightarrow{\kappa} \mathbb{F}_{2}
$$

Bordism interpretation of the Adams spectral sequence.

I have defined an Adams tower in more generality than is usual because I want to give bordism interpretations of the various parts of the E^{1} exact couple. Ultimately I want to express the Kervaire invariant as a characteristic number, and then identify that characteristic number with the functional κ. The Adams tower we will use is built not from the Eilenberg Mac Lane spectrum $H \mathbb{F}_{2}$ but rather from the Thom spectrum $M O$, which Thom showed to be a wedge of mod 2 Eilenberg

Mac Lane spectra. With X the sphere spectrum S and $\overline{M O}=M O / S$, there is an Adams tower of the form

All the parts of the diagram induced in homotopy admit bordism interpretations. $\pi_{*}(S)$ is the framed bordism ring, $\pi_{*}(M O)$ is the bordism ring of (unoriented) manifolds, and the map k forgets the framing. An element of $\pi_{n+1}(\overline{M O})$ represents a class of triples (N, M, t), in which N is an $n+1$ manifold with boundary, $M=\partial N$, and t is a trivialization of ν_{M}. Such an " (O, fr) manifold" represents zero if it is a "boundary," i.e. if there it embeds in a manifold with corner $\left(P, N, N^{\prime}, M, t\right)$. This means that P is an $n+2$ manifold whose boundary is given by $N \cup_{M} N^{\prime}$; N and N^{\prime} are manifolds with boundary and $\partial N=M=\partial N^{\prime}$; and t^{\prime} is a trivialization of the normal bundle of N^{\prime} which restricts to the given trivialization of the normal bundle of M. The map $\pi_{n+1}(\overline{M O}) \rightarrow \pi_{n}(S)$ sends (N, M, t) to its "boundary" $(M, t), t=\left.t^{\prime}\right|_{M}$.

Warmup: the Hopf invariant. In positive dimensions, the Hopf invariant can be described as the composite

$$
\pi_{n} \cong F^{1} \pi_{n} \rightarrow F^{1} \pi_{n} / F^{2} \pi_{n} \cong E_{\infty}^{1, n+1} \hookrightarrow \operatorname{Ext}_{A^{*}}^{1, n+1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{a_{1}} \mathbb{F}_{2}
$$

in which a_{1} is an element of $\operatorname{Tor}_{1, n+1}^{A^{*}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ (which is canonically dual to the Ext group) represented by the cycle

$$
\alpha_{1}=\left[\mathrm{Sq}^{n+1}\right]
$$

in the bar construction. The cycle α_{1} is a boundary unless $n+1$ is a power of 2 (since $S q^{n+1}$ is decomposable in A^{*} unless $n+1$ is a power
of 2), so the Hopf invariant is potentially nonzero only in dimensions of the form $n=2^{k}-1$. In this case the functional a_{1} sends the generator $h_{k} \in \operatorname{Ext}_{A^{*}}^{1, n+1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ to $1 \in \mathbb{F}_{2}$.

The short exact sequence

$$
0 \leftarrow \mathbb{F}_{2} \leftarrow H^{*}(M O) \leftarrow H^{*}(\overline{M O}) \leftarrow 0
$$

induces a boundary map compatible with the projection map in the Adams tower:

The functional a_{0} here is given by the class $\partial a_{1} \in \operatorname{Tor}_{0, n+1}^{A^{*}}\left(H^{*}(\overline{M O}), \mathbb{F}_{2}\right)$, where ∂ is the boundary map induced by the same short exact sequence. We find:

$$
\begin{aligned}
{\left[\mathrm{Sq}^{n+1}\right] \leftarrow } & {\left[\mathrm{Sq}^{n+1}\right] U } \\
& \downarrow d \\
& \mathrm{Sq}^{n+1} U
\end{aligned} \leftarrow w_{n+1} \cup U
$$

so a_{0} is represented by the element

$$
\alpha_{0}=w_{n+1} \cup U
$$

The Hopf invariant is thus captured by the Hurewicz map on $\pi_{n+1}(\overline{M O})$.
The interpretation of this in terms of (O, fr) manifolds is this. Let (N, M, t) be an (O, fr) manifold. Let ν be the normal bundle of N. The trivialization t of $\left.\nu\right|_{M}$ provides a factorization of $N \rightarrow B O$ through N / M, and hence for any $c \in \bar{H}^{k}(B O)$ we obtain a class $c(\nu, t) \in$ $H^{k}(N, M)$; in particular, $w_{n+1}(\nu, t) \in H^{n+1}(N, M)$. Then

$$
\operatorname{Hopf}(M, t)=\left\langle w_{n+1}\left(\nu_{N}, t\right),[N, M]\right\rangle
$$

This was observed for example by Stong, [9], p. 105.
Kervaire via (O,fr) manifolds. Let me change notation, and write $\overline{b_{2}}$ for the functional on $\operatorname{Ext}_{A^{*}}^{2,2 n+2}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ which detects $h_{i}^{2}, i \geq 0$. There is a convenient and explicit cycle in the bar construction which represents the element $b_{2} \in \operatorname{Tor}_{2,2 n+2}^{A^{*}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, namely

$$
\beta_{2}=\sum_{i=0}^{n}\binom{n+1+i}{n+1}\left[\mathrm{Sq}^{n+1-i} \mid \chi \mathrm{Sq}^{n+1+i}\right]
$$

The fact that this is a cycle follows from the identity [1]

$$
\sum_{i=0}^{n}\binom{n+1+i}{n+1} \mathrm{Sq}^{n+1-i} \chi \mathrm{Sq}^{n+1+i}=0
$$

This is like the defining identity for the $\chi \mathrm{Sq}^{\prime} \mathrm{s}, \sum_{i=0}^{2 n+2} \mathrm{Sq}^{n+1-i} \chi \mathrm{Sq}^{n+1+i}=0$ but omits most of the terms. In the critical dimension, $n=2^{k}-1$, the cycle takes the form $\sum_{i=0}^{n}\left[\mathrm{Sq}^{n+1-i} \mid \chi \mathrm{Sq}^{n+1+i}\right]$.

Just as before, we have the commutative diagram

where $b_{1}=\partial b_{2} \in \operatorname{Tor}_{1,2 n+2}^{A^{*}}\left(\mathbb{F}_{2}, H^{*}(\overline{M O})\right)$. Lannes computed this class to be represented by the cycle

$$
\beta_{1}=\sum_{i=0}^{n}\left[\mathrm{Sq}^{n+1-i}\right] v_{i} v_{n+1} \cup U
$$

and then verified that this functional coincides with the Kervaire invariant, giving a new proof of Browder's theorem.

Codimension two. We can push this story one step further:

where $b_{0}=\partial b_{1} \in \operatorname{Tor}_{0,2 n+2}^{A^{*}}\left(\mathbb{F}_{2}, H_{*}(\overline{M O} \wedge \overline{M O})\right)$ turns out to be the class of

$$
\beta_{0}=\sum_{i=0}^{n}\left(v_{n+1-i} \cup U\right) \otimes\left(v_{i} v_{n+1} \cup U\right)
$$

An element of the group $\pi_{2 n+2}(\overline{M O} \wedge \overline{M O})$ is represented by a " $(O, \mathrm{fr})^{2}$-manifold." This consists of the data $\left(P, N_{1}, N_{2}, \nu_{1}, \nu_{2}, t_{1}, t_{2}\right)$, where P is a $(2 n+2)$-manifold with boundary $N=N_{1} \cup_{M} N_{2}, \partial N_{1}=$ $M=\partial N_{2}$; the normal bundle ν_{P} comes with a splitting $\nu_{P}=\nu_{1} \oplus \nu_{2}$; t_{1} is a trivialization of $\left.\nu_{1}\right|_{N_{1}}$ and t_{2} is a trivialization of $\left.\nu_{2}\right|_{N_{2}}$. The normal bundle of the corner M thus acquires a trivialization t. The map $\pi_{2 n+2}(\overline{M O} \wedge \overline{M O}) \rightarrow \pi_{2 n+1}(\overline{M O})$ carries this data to $\left(N_{1}, M, t\right)$.

The element β_{0} gives rise to the characteristic number appearing in the following theorem.

Proposition. [6] Let ($P, N_{1}, N_{2}, \nu_{1}, \nu_{2}, t_{1}, t_{2}$) be an $(O, \text { fr })^{2}$ manifold. Then

$$
\operatorname{Kervaire}(M, t)=\sum_{i=0}^{n}\left\langle v_{n+1-i}\left(\nu_{1}, t_{1}\right) \cup v_{i}\left(\nu_{2}\right) v_{n+1}\left(\nu_{2}, t_{2}\right),[P, N]\right\rangle
$$

This gives yet another proof of Browder's theorem. A proof of the proposition is sketched below, after a reminder on quadratic forms.

Quadratic forms. Let E be a finite dimensional \mathbb{F}_{2} vector space with a symmetric bilinear form denoted $x \cdot y$. The "perp" of a subspace $I \subseteq E$ is

$$
I^{\perp}=\{x \in E: x \cdot y=0 \text { for all } y \in I\}
$$

Clearly $I \subseteq I^{\perp \perp}$. The map

$$
E / I^{\perp} \rightarrow E^{*} \quad, \quad x \mapsto(y \mapsto x \cdot y)
$$

is injective by definition of I^{\perp}.
Now assume that the form is nondegenerate, so that we have an "inner product space." Then this map is also surjective; any linear functional on I extends to a linear functional on E, and so is given by pairing with some element. So in this case

$$
\operatorname{dim} I+\operatorname{dim} I^{\perp}=\operatorname{dim} E \quad \text { and } \quad I=I^{\perp \perp}
$$

The monoid of isomorphism classes of inner product spaces over \mathbb{F}_{2} (and orthogonal direct sum) is the same as the monoid of diffeomorphism classes of closed surfaces (and connected sum): The simple objects are the unique 1-dimensional inner product space $I=H^{1}\left(\mathbb{R} P^{2}\right)$, and the "hyperbolic space" $H=H^{1}\left(S^{1} \times S^{1}\right)$ with inner product given
by the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then $H \oplus I=3 I$, and any inner product space is either a multiple of I or a multiple of H.

An inner product is "even" if $x \cdot x=0$ for all x. From the classification, this is equivalent to being a multiple of H (and corresponds to the oriented surfaces). Such spaces are necessarily even dimensional.

Note that the restriction of an inner product to a subspace is not generally nondegenerate; for example one-dimensional subspaces of even inner product spaces are always degenerate. If I is a nondegenerate subspace of the inner product space E, then $I \cap I^{\perp}=0$ and so $E=I \oplus I^{\perp}$, the orthogonal direct sum.

At the other extreme, a subspace $I \subseteq E$ is a "Lagrangian" if $I=I^{\perp}$. If E admits a Lagrangian subspace I then $\operatorname{dim} E=2 \operatorname{dim} I$ and so is even. Conversely, any $2 n$ dimensional inner product space admits a Lagrangian subspace: the operation $I \mapsto I^{\perp}$ is an involution on the set of n-dimensional subspaces, which has odd cardinality and hence a fixed point.

A "quadratic refinement" of the inner product $x \cdot y$ on E is a map $q: E \rightarrow \mathbb{F}_{2}$ such that

$$
q(x+y)=q(x)+q(y)+x \cdot y
$$

Taking $x=y=0$ shows that $q(0)=0$. Taking $x=y$ shows that the inner product is even.

The hyperbolic inner product space H admits four quadratic refinements: q can be nonzero on any one of the nonzero vectors and zero otherwise; or it can be nonzero on all three nonzero vectors. The first three are permuted by automorphisms of H. Call these two quadratic spaces Q_{0} and Q_{1}. Any quadratic space $\left(\right.$ over $\left.\mathbb{F}_{2}\right)$ is isomorphic to either $n Q_{0}$ (Arf invariant 0) or $Q_{1} \oplus(n-1) Q_{0}$ (Arf invariant 1); dimension and Arf invariant form a complete invariant.

Since the underlying inner product of a quadratic space is even, there are Lagrangian subspaces I in E. Choose one. Since I is selforthogonal, $\left.q\right|_{I}$ is a linear functional, and hence there exists $u \in E$ such that $q(x)=x \cdot u$ for all $x \in I$. The set of such elements u forms a coset of $I \subseteq E$, and the calculation $q(u+x)=q(u)+q(x)+x \cdot u=q(u)$ shows that $q(u)$ is independent of choice of u. It looks like it might still depend upon the choice of Lagrangian, but it doesn't:

Proposition. (Lannes [5], 0.2.1) The Arf invariant of (E, q) is given by $q(u)$.

Let M be a $2 n$ manifold which is the boundary of a $(2 n+1)$-manifold N. Then, as observed by Thom, the self-duality of the exact sequence

$$
H^{n}(N) \xrightarrow{i^{*}} H^{n}(M) \xrightarrow{\delta} H^{n+1}(N, M) \longrightarrow H^{n+1}(N)
$$

implies that $I=\operatorname{Im}\left(i^{*}: H^{n}(N) \rightarrow H^{n}(M)\right)$ is a Lagrangian in the inner product space $E=H^{n}(M)$. Now suppose that M is framed. Write t for the framing, and equip $E=H^{n}(M)$ with the quadratic form q_{t}. (If N admits a framing extending that of N, then the quadratic form is trivial on I, and so the Witt class of the quadratic form is a framed bordism invariant.)

In this situation, Lannes characterized the elements $u \in E$ such that $q(x)=u \cdot x$ for $x \in I$, in terms of the relative Wu class $v_{n+1}(\nu, t) \in$ $H^{n+1}(N, M)$. This class restricts on N to $v_{n+1}(\nu) \in H^{n+1}(N)$, which vanishes since $n+1>(2 n+1) / 2$. Let $u \in H^{n}(M)$ be such that $\delta u=v_{n+1}(\nu, t) \in H^{n+1}(N, M)$. It is well defined modulo I, so we may hope for the following result.

Proposition. (Lannes [5], 0.2.2) $q(x)=x \cdot u$ for any $x \in I$.
Say $x=i^{*} y$, for $y \in H^{n}(N)$. By self-duality of the sequence, this equation can be rewritten as

$$
q\left(i^{*} y\right)=i^{*} y \cdot u=y \cdot \delta u=y \cdot v_{n+1}(\nu, t)
$$

Sketch of proof.

Step 1. Suppose that $\left(P, N_{1}, N_{2}\right)$ is a manifold with codimension 2 corner. The first step is to construct a self-dual diagram analogous to the (N, M) homology exact sequence. We need a space dual to P / M. Define X to be the homotopy pushout in the diagram

and

$$
V=P / N_{1} \vee P / N_{2} .
$$

There is a commutative diagram of cofiber sequences

which enjoys a duality in cohomology across the diagonal line through ΣV and $\Sigma^{2} M_{+}$.

Define an inner product space E as the orthogonal direct sum

$$
E=H^{n}(M) \oplus H^{n+1}(V)
$$

and let

$$
J=\operatorname{Im}\left(i^{*}=\left[\begin{array}{l}
\rho^{*} \\
\sigma^{*}
\end{array}\right]: H^{n+1}(X) \longrightarrow H^{n}(M) \oplus H^{n+1}(V)\right) \subseteq E
$$

This is a Lagrangian subspace.
Step 2. Assume given a trivialization t of ν_{M}. Using it, impose on E the quadratic form

$$
q=q_{t} \oplus q_{h}
$$

where q_{h} is the "hyperbolic form" given using the duality between $H^{n+1}\left(P, N_{1}\right)$ and $H^{n+1}\left(P, N_{2}\right)$. Then, as in Lannes's theorem,

$$
q\left(i^{*} y\right)=v_{n+1}\left(\nu_{P}, t\right) \cdot y
$$

for $y \in H^{n+1}(X)$, using the duality pairing

$$
H^{n+1}(P, M) \otimes H^{n+1}(X) \rightarrow \mathbb{F}_{2}
$$

Step 3. Assume that there exist classes $u_{1} \in H^{n+1}\left(P, N_{1}\right)$ and $u_{2} \in$ $H^{n+1}\left(P, N_{2}\right)$ such that

$$
v_{n+1}\left(\nu_{P}, t\right)=\tau^{*}\left(u_{1}, u_{2}\right) \in H^{n+1}(P, M)
$$

Then

$$
\operatorname{Arf}\left(q_{t}\right)=u_{1} \cdot u_{2}
$$

This is a calculation using duality of the diagram:

$$
q\left(i^{*} y\right)=\tau^{*}\left(u_{1}, u_{2}\right) \cdot y=\left(u_{1}, u_{2}\right) \cdot \sigma^{*} y=\left(0, u_{1}, u_{2}\right) \cdot i^{*} y
$$

Therefore

$$
\operatorname{Arf}\left(q_{t}\right)=\operatorname{Arf}(q)=q\left(0, u_{1}, u_{2}\right)=q_{h}\left(u_{1}, u_{2}\right)=u_{1} \cdot u_{2}
$$

Step 4. Finally, assume that we have a framed corner. Then we can take

$$
\begin{aligned}
& u_{1}=\sum_{i=0}^{n} v_{n+1-i}\left(\nu_{1}, t_{1}\right) v_{i}\left(\nu_{2}\right) \\
& u_{2}=v_{n+1}\left(\nu_{2}, t_{2}\right)
\end{aligned}
$$

because the Whitney sum formula for relative Wu classes shows that

$$
v_{n+1}\left(\nu_{P}, t\right)=\sum_{i=0}^{n} v_{n+1-i}\left(\nu_{1}, t\right) v_{i}\left(\nu_{2}\right)+v_{n+1}\left(\nu_{2}, t\right)=\tau^{*}\left(u_{1}, u_{2}\right)
$$

So by Step 3 the Arf invariant of q_{t} is given by

$$
\begin{aligned}
& u_{1} \cdot u_{2}=\sum_{i=0}^{n} v_{n+1-i}\left(\nu_{1}, t_{1}\right) v_{i}\left(\nu_{2}\right) \cdot v_{n+1}\left(\nu_{2}, t_{2}\right) \\
& = \\
& =\sum_{i=0}^{n}\left\langle v_{n+1-i}\left(\nu_{1}, t_{1}\right) \cup v_{i}\left(\nu_{2}\right) v_{n+1}\left(\nu_{2}, t_{2}\right),[P, N]\right\rangle
\end{aligned}
$$

Haynes Miller
June, 2009

References

[1] M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, Cont. Math. 12 (1982) 47-52.
[2] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. 90 (1969) 157-186.
[3] E. H. Brown, Jr., Generalizations of the Kervaire invariant, Ann. of Math. 95 (1972) 368-383.
[4] J. D. S. Jones and E. Rees, Kervaire's invariant for framed manifolds, Proc. Symp. in Pure Math. 32 (1978) 141-147.
[5] J. Lannes, Sur l'invariant de Kervaire des varietés fermées stablement parallelisées, Ann. Sci. E. N. S. 14 (1981) 183-197.
[6] J. Lannes and H. R. Miller, The Kervaire invariant and manifolds with corners, in preparation.
[7] G. Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) 5667-5688.
[8] N. Ray, A geometrical observation on the Arf invariant of a framed manifold, Bull. London Math. Soc. 4 (1972) 163-164.
[9] R. E. Stong, Notes on Cobordism Theory, Mathematical Notes, Princeton University Press, 1968.

