Equivariant Cohomology Theories

Definition
A G-complex X is a CW-complex with an action of G so that X^H for any $H \leq G$ is a subcomplex.

We would like to give the cohomology of a G-complex so that information regarding the action of G is incorporated.

Definition
An equivariant cohomology theory is a sequence of contravariant functors $H^n_G : G$-complexes $\rightarrow Ab$
Equivariant Cohomology Theories

Definition
The orbit category O_G is the category consisting of objects G/H for $H \leq G$ and morphisms $G/H \to G/K$ whenever $g^{-1}Hg \subset K$ for some $g \in G$.

Since G-complexes are built from the orbits G/H using equivariant maps $G/H \to G/K$, any ECT should include groups $H^n(G/H)$ and homomorphisms $H^n(G/K) \to H^n(G/H)$.
Coefficient Systems

Definition
A coefficient system \underline{M} is a contravariant functor from O_G, the orbit category, to Ab.
The collection of coefficient systems forms a category \mathcal{C}_G.

In equivariant ordinary cohomology:

$$H^*(G/H; \underline{M}) = H^0(G/H; \underline{M}) = \underline{M}(G/H)$$

for any $\underline{M} \in \mathcal{C}_G$
A Mackey functor M is a pair of functors $M^*: O^\text{op}_G \to \text{Ab}$ and $M_*: O_G \to \text{Ab}$ such that $M^*(X) = M_*(X) = M(X)$ and which send disjoint unions to direct sums and satisfy certain commutativity relations.

Notation: For $f: G/H \to G/K$ we call $M^*(f)$ a restriction and $M_*(f)$ a transfer.
Bredon Cohomology

If X is a G-complex, define the chains on X by:

$$C_*(X)(G/H) = C_*(X^H)$$

Then for $M \in C_G$ define the cochains by:

$$C^n_G(X; M) = \text{Hom}_{C_G}(C_n(X), M)$$

and so we define Bredon cohomology to be

$$H^n_G(X; M) = H^n(C_G^*(X; M))$$
An alternative definition for Bredon cohomology can be given since it is, in fact, representable. To give this, we must have definitions for equivariant homotopy groups.

Definition

Let X be a G-space. For each $H \leq G$ the equivariant homotopy groups of X are given by

$$\pi^H_n(X) = [S^n \wedge G/H_+, X]_G$$
Stable Equivariant Homotopy Groups

Definition
A G-spectrum X is a collection of G-spaces X_k together with equivariant maps $\Sigma X_k \to X_{k+1}$ (or equivalently $X_k \to \Omega X_{k+1}$)

Definition
The equivariant homotopy groups of the G-spectrum X are given by

$$\pi^H_n(X) = \left[\Sigma^\infty S^n \wedge (G/H)_+, X \right]_G$$

Note: These homotopy groups form a Mackey functor:

$$\pi_n(X) = \left[\Sigma^\infty S^n \wedge (G/H)_+, X \right]_G$$

Carolyn Yarnall
Mackey Functors in Eq. Homotopy and Cohomology Theory
Stable Equivariant Homotopy Groups

Definition
A G-spectrum X is a collection of G-spaces X_k together with equivariant maps $\Sigma X_k \to X_{k+1}$ (or equivalently $X_k \to \Omega X_{k+1}$)

Definition
The equivariant homotopy groups of the G-spectrum X are given by

$$\pi_n^H(X) = [\Sigma^\infty S^n \wedge (G/H)_+, X]_G$$

or equivalently

$$\pi_n^H(X) = \colim_k \pi_n^H(X_k)$$

Note: These homotopy groups form a Mackey functor:

$$\pi_n(X)(G/H) = [\Sigma^\infty S^n \wedge G/H_+, X]_G = \pi_n^H(X)$$
Equivariant Homotopy Group Mackey Functor

\[
\pi_k(X)(G/H) = [G/H_+ \wedge S^k, X]_G \\
= [G_+ \wedge_H S^k, X]_G \\
= [S^k, X]_H \\
= \pi_k(X^H)
\]

Restriction Map \(\pi_k(X^K) \rightarrow \pi_k(X^H) \)
Induced from inclusion of fixed points \(X^K \rightarrow X^H \)

Transfer Map \(\pi_k(X^H) \rightarrow \pi_k(X^K) \)
Induced from \(X^H \rightarrow X^K \)

\[
x \rightarrow \sum_{gH \in K/H} g \cdot x
\]
Cohomology Theories from G-Spectra

Let X be a G-space and Y be a G-spectrum.

The groups $[\Sigma^{k-n}X, Y_k]_G$ form a direct system:

$$[\Sigma^{k-n}X, Y_k]_G \to [\Sigma^{k-n+1}X, \Sigma Y_k]_G \to [\Sigma^{k-n+1}X, Y_{k+1}]_G$$

So we can define cohomology:

$$\tilde{Y}_G^n(X) = \colim_k [\Sigma^{k-n}X, Y_k]_G$$

$$= \colim_k \pi_{k-n}(F(X, Y^G)_k)$$

$$= \pi_{-n}(F(X, Y)^G)$$

Carolyn Yarnall Mackey Functors in Eq. Homotopy and Cohomology Theory
Equivalence of Categories

From which G-spectrum do we obtain Bredon cohomology?

Proposition

There is an equivalence of categories between the category of Mackey functors and the homotopy category consisting of G-spectra X such that $\pi_i(X) = 0$ for $i \neq 0$.

In particular, for any Mackey functor M, we have an associated Eilenberg-MacLane spectrum HM satisfying:

$$\pi_k(HM) = \begin{cases} M & k=0 \\ 0 & \text{otherwise} \end{cases}$$
Bredon Cohomology

Now for any Mackey functor M, we may obtain Bredon Cohomology from HM as follows:

$$\tilde{H}^n_G(X; M) = \colim_k [\Sigma^{k-n}X, (HM)_k]_G$$

$$= [\Sigma^{-n}X, HM]_G$$

$$= \pi_{-n}(F(X, HM))^G$$

$$= \pi_{-n}(F(X, HM))(G/G)$$

Note: For a group G, Bredon Cohomology is the image of G/G under a Mackey functor.
RO(G)-grading

In working with equivariant theories, we want to consider spheres with nontrivial G-action. In particular, we will look at linear spheres arising from representations of G.

Definition
For a group G and a vector space V, we will say a representation of G is a homomorphism $\rho : G \rightarrow O(V)$.

Definition
For a representation space V we will write S^V to denote the one-point compactification of V.
RO(G)-graded Homotopy Groups

If $V \in RO(G)$ then it is also an H-representation for any $H \leq G$ so we have RO(G)-graded homotopy groups:

$$\pi^H_V(X) = [S^V, X]_H = [G_+ \wedge_H S^V, X]_G$$

Note: Our original \mathbb{Z}-graded homotopy groups $\pi^H_n(X)$ are the homotopy groups associated to the trivial representation $n \in RO(G)$ where n stands for \mathbb{R}^n.

Carolyn Yarnall

Mackey Functors in Eq. Homotopy and Cohomology Theory
RO(G)-graded Cohomology

In addition to usual \mathbb{Z}-suspensions we have:

$$\Sigma^V X = X \land S^V$$

for any $V \in RO(G)$

So extending the usual suspension axiom

$$\sigma_n : H^n(X) \to H^{n+1}(\Sigma X)$$

we obtain RO(G)-graded cohomology groups:

$$H^\alpha_G(X) \cong H^{\alpha+V}_G(\Sigma^V X)$$

for $\alpha, V \in RO(G)$
Why is the RO(G)-grading important?

A few examples:

- (Lewis) Let X be a \mathbb{Z}/p-complex constructed from even dimensional unit disks of real G-representations. The $H^*_G(X)$ is a free $RO(G)$-graded module over the equivariant ordinary cohomology of a point.

- (Lewis) Let V be a complex G-representation and $P(V)$ the associated complex projective space. Then all generators of $H^*_G(P(V))$ live in dimensions corresponding to nontrivial representations of G.

- (tom Dieck) RO(G)-graded cohomology theories admit important splitting theorems.
When can we extend?

In the $RO(G)$-graded setting we have transfer maps

$$\tau(G/H) : S^V \to (G/H)_+ \wedge S^V$$

These induce transfer homomorphisms

$$\tilde{H}^n_H(X; M) \cong \tilde{H}^{V+n}_G(\Sigma^V (G/H_+ \wedge X); M)$$

If $n = 0$ and $X = S^0$ we get a transfer map

$$\underline{M}(G/H) \to \underline{M}(G/G)$$
If this argument is elaborated a bit we get that the coefficient system M must actually be a Mackey functor.

Additionally it can be shown that this necessary condition is also sufficient:

Theorem (May, Waner) The ordinary \mathbb{Z}-graded cohomology theory $\tilde{H}^*_G(-; M)$ extends to an RO(G)-graded theory if and only if M extends to a Mackey functor.
We may additionally think of our Equivariant Cohomology Theory as being Mackey functor valued:

\[H^\alpha_G(X; M) = \pi_{-k}(X)(G/G) \]

and

\[H^\alpha_H(X; M) = \pi_{-k}(X)(G/H) \]

In general we have

\[H^\alpha_G(X; M)(G/H) = H^\alpha_G(G/H_+ \wedge X; M) \]
An Example

\[
\begin{align*}
H_{C_p}^\alpha(X; M)(C_p/C_p) &= H_{C_p}^\alpha(X; M) \\
(H_C^\alpha(X; M)(C_p/e) &= H_C^\alpha(C_p \times X; M)
\end{align*}
\]

\(\pi^*\) is induced from the projection \(\pi : C_p \times X \to X\)

\(\pi!\) is the transfer map arising from regarding the projection \(\pi\) as a covering space.

Note: \(H_G^\alpha(G \times X; M) \cong H_{\lvert \alpha \rvert}(X; M(G/e))\)