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Abstract. The primes or prime polynomials (over finite fields) are supposed

to be distributed ‘irregularly’, despite nice asymptotic or average behavior.
We provide some conjectures/guesses/hypotheses with ‘evidence’ of surprising

symmetries in prime distribution. At least when the characteristic is 2, we
provide conjectural rationality and characterization of vanishing for families

of interesting infinite sums over irreducible polynomials over finite fields. The

cancellations responsible do not happen degree by degree or even for degree
bounds for primes or prime powers, so rather than finite fields being respon-

sible, interaction between all finite field extensions seems to be playing a role

and thus suggests some interesting symmetries in the distribution of prime
polynomials. Primes are subtle, so whether there is actual vanishing of these

sums indicating surprising symmetry (as guessed optimistically), or whether

these sums just have surprisingly large valuations indicating only some small
degree cancellation phenomena of low level approximation symmetry (as feared

sometimes pessimistically!), remains to be seen. In either case, the phenom-

ena begs for an explanation. Arxive Version 2: Reference to a beautiful
explanation by David Speyer and important updates are added at

the end after the first version. Updates to version 2 follow this.

We start with the simplest case of the conjecture and some of its consequences:

Conjecture/Hypothesis A When ℘ runs through all the primes of F2[t],

S :=
∑ 1

1 + ℘
= 0, as a power series in 1/t.

The conjecture implies by geometric series development, squaring in character-
istic two and subtracting that

∞∑
n=1

∑
℘

1

℘n
= 0 =

∞∑
n=1

∑
℘

1

℘2n
=

∞∑
n=1

∑
℘

1

℘2n−1
.

Now this series S is also the logarithmic derivative at x = 1 of P(x) =
∏

(1 +
x/℘)m℘ , where m℘’s are any odd integers depending on ℘, for example 1 or −1
assigned in arbitrary fashion. Hence the derivative of P at x = 1 is also zero.

Now for the simplest choice m℘ = 1 for all ℘, we have

P(x) =

∞∑
n=0

∑ xn

℘1 · · ·℘n
,

where the second sum is over all distinct n primes ℘1, · · · , ℘n.
If we put m℘ = −1 for some ℘, by the geometric series development of the

corresponding term, it contributes to the power series with any multiplicity.
1
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For such choices ±1, this thus implies

0 =
∑
℘i

1

℘1
+

1

℘1℘2℘3
+

1

℘1 · · ·℘5
+ · · · ,

where the sum is over all the primes with or without multiplicities prescribed for
any subset of primes.

Choosing m℘’s to be more than one, bounds the multiplicities of those primes by
m℘’s, but with complicated sum conditions due to complicated vanishing behaviors
of the binomial coefficients involved, with m℘ = 2n − 1 giving the simplest nice
behavior of just bounding the multiplicity.

The complementary sum with even number of factors is then (under A) transcen-
dental (zeta value power), at least when m℘ is constant. Also note that changing
finitely many m℘’s (to even say) just changes the answer by a rational function.

The cancellations happen in a complicated fashion, indicating some nice symme-
tries in the distribution of primes in function fields. Whereas the usual sum evalua-
tions involving primes are basically through involvement of all integers through the
Euler product, here the mechanism seems different, with mysterious Euler prod-
uct connection through logarithmic derivatives. We will explain this later to keep
description of results and guesses as simple as possible.

Now we explain the set-up and more general conjectures and results.
Notation

q = a power of a prime p
A = Fq[t]

A+ = {monics in A}
P = {irreducibles in A (of positive degree)}

P+ = {monic elements in P}
K = Fq(t)

K∞ = completion of K at the place ∞ of K
[n] = tq

n − t
deg = function assigning to a ∈ A its degree in t, deg(0) = −∞

For positive integer k, let P (k) =
∑

1/(1−℘k) ∈ K∞, where the sum is over all
℘ ∈ P+ and p(k) be its valuation (i.e., minus the degree in t) at infinity. Similarly
we define Pd(k), pd(k), P≤d(k), p≤d(k), by restricting the sum to ℘’s of degree equal
or at most d. Since P (kp) = P (k)p, we often restrict to k not divisible by p.

Conjecture / Hypothesis B For q = 2, and k ≥ 1, P (k) is a rational function
in t. For example, P (2n − 1) = [n− 1]2/[1]2

n

.
We have several conjectures (the simplest is k = 5 giving (t4 + t + 1)/([1][3]))

about exact rational functions for hundreds of odd k’s not of this form, but do not
have a general conjectural form yet.

Conjecture/Hypothesis C Let p = 2, and k an odd multiple of q − 1. Then
(i) P (k) is rational function in t, (ii) When q = 4, it vanishes if and only if k =
4n + (4n − 4j − 1), with n ≥ j > 0). (iii) For q = 2m > 2, it vanishes for
k = 2qn − qj − 1 with n ≥ j > 0 (iv) For q = 2m, it vanishes, if (and only if )
p1(k) ≥ 2k.
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Remarks (0) Again we have several simpler conjectural vanishing criteria for
q = 2m > 4 and conjectural formulas for the rational function, for various q’s and
k’s. For example, For q = 4, k = 9, 21, 57, it should be 1/([1]3 + 1), 1/[1]6 and
[1]/[3] respectively, whereas for q = 8, k = 49, it should be [1]/[2]. The ‘only if’ part
of (iv) the Conjecture C is trivial (following from trivial weaker form p1(k) ≥ p2(k)).
The ‘only if’ part of (ii) should be possible to settle, by methods below. But it has
not yet been fully worked out. For k’s of part (ii), P1(k) = 0, if n = j, and we
guess p1(k) = 2k + 4j + 2 otherwise.

(1) It is just possible (but certainly not apparent in our limited computations)
that rationality works without any restriction on characteristic p, but we do not yet
have strong evidence either way. Similarly, when k is not a multiple of q − 1, P (k)
does not look (we use continued fractions) rational. Is it always transcendental over
K then?

(2) The valuation results below show that the convergence is approximately
linear in the degree in contrast to usual power sums over all monic polynomials
when it is exponential. This makes it hard to compute for large d, especially for
even moderate size q.

Sample numerical evidence Note that the vanishing conjectures and others
when the guesses of rational functions are given above, if false, can be easily refuted
by computation. We give only a small sample of computational bounds on accuracy
checks that we did by combining calculation and theory below (which often improves
the bounds a little).

(A) For q = 2, p(1) ≥ 42 by direct calculation for d ≤ 37 and some theory.
(C (ii)) For q = 4, p(3) ≥ 60, p(15) ≥ 228, p(63) ≥ 828, p(255) ≥ 3072, p(27) ≥

384, p(111) ≥ 1224, with calculation for d ≤ 15, 14, 12, 11, 14, 10 resp. etc.
For q = 8, p(7) ≥ 112, p(21) ≥ 224, p(63) ≥ 612, p(511) ≥ 7168 etc.
(B and C(i)): Let e(k) be the valuation of the ‘error’: P (k) minus its guess

(so conjecturally infinite). For q = 2, e(3) ≥ 88, e(7) ≥ 176, e(15) ≥ 348, e(31) ≥
652, e(63) ≥ 1324 etc. and e(5) ≥ 130, e(9) ≥ 170 etc. for other guesses. For q = 4,
e(9) ≥ 128 etc. We have a few q = 8, 16 examples: larger q are hard to compute.

To illustrate behavior, q = 16, k = 255, then P1(k) = P2(k) = 0, p3(k) =
3840, p4(k) = 61440, p5(k) = 7920 etc.

Guesses/observations at finite levels Not tried yet to settle.
(I) q = 2, p2n(1) = 2n+1 + 2, n > 2, p3n(1) = 3n + 3n−1, p5n(1) = 5n + 5n−1

(n ≤ 5, 3, 2 evidence) and may be similar for any odd prime power (n = 1 evidence)?
(II) For general q prime, if d = 2 or 3, pd(q− 1) = q(q− 1). There is much more

data and guesses of this kind, e.g., Let q = 4. If k = q` − 1, then p2(k) = p3(k) =
q`(q − 1), p4(k) = 2q`(q − 1) and p≤3(k) = b`, where b1 = 24 and bn+1 = 4bn + 12.
(Evidence ` ≤ 5).
q = 2n > 2, k = q` − 1, then p3(k) = q`(q − 1) (checked q = 8, 16, ` ≤ 4, 2).
(III) We have guesses for most of (i) e≤d(k) for q = 2, k = 2n − 1, d ≤ 17, e.g.

18k + 6 for d = 17, k > 3. (ii) p≤d(k) for q = 4, d ≤ 10 where P (k) is guessed
zero, e.g., 9k + 9 for d = 7, 8 and if k = 4n − 1, n > 1, also for d = 5. Also,
q = 4, k = 4n− 1, then guess: p8(k) = 18(k+ 1), p4(k) = 6(k+ 1), p2(k) = 3(k+ 1).
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Remarks: (1) Conjecture A is equivalent to : Write 1/(1 + ℘) =
∑
ak,℘t

−k,
then

∑
ad,℘ = 0, where the sum is over all irreducible ℘ of degree at most d. This

is equivalent to there being even number of such ℘ with ad,℘ = 1.
(2) Note P (k) is (minus of ) the logarithmic derivative at x = 1 of (new defor-

mation of Carlitz zeta values)

ζ(x, k) :=
∑

a∈A+

xΩ(a)

ak
=

∏
℘∈P+

(1− x

℘k
)−1,

where Ω(a) denotes the number of (monic) prime factors (with multiplicity) of a.
The conjecture A was formulated around end 2013-start 2014 via vague opti-

mistic speculations (which could not be turned to proofs) about this new zeta vari-
ant. The rationality conjectures were first publicly announced at Function Field
meeting at Imperial college in summer 2015. All conjectures (except for the explicit
forms) follow from another specific conjectural deformation of the Carlitz-Euler for-
mula (for ‘even’ Carlitz zeta values) for the zeta variant. Natural candidates seem
to have closely related properties.

(3) This is work in progress and in addition to trying to settle these, we are
investigating possible generalizations to rationality for general q, L functions with
characters, logarithmic derivatives at other points, higher genus cases and possible
number field analogs. Nothing concrete positive to report yet. (Except for the
following simple observations on easier things at finite level, for whatever they
might be worth: Since the product of (monic) primes of degree dividing n is [n],
we get nice formulas for sum of logarithmic derivatives of primes of degree d, by
inclusion-exclusion. We are also looking at power sums P (d, k) =

∑
℘k over degree

d monic primes ℘. It seems that the values of degree at most q are only c, c[1], with
c ∈ Fp (rather than all c[1]+d permitted by translation invariance) (at least in small
range of q, d, k checked so far, with 2 low exceptions for q = 2), or more generally,
if q > 2 the product of the constant and t-coefficients is zero. (If true, it should
follow from known prescribed coefficients formulae, as we are trying to verify). A
simple sample result proved is P (d, 1) = 0 for 0 < d ≤ q − 2, P (q − 1, 1) = −1,
P (q, 1) = −[1] for q prime (odd for the last part). This follows by simply writing
the power sum as linear combination (with denominators prime to q) of power sums
over polynomials of degrees at most d, which are well-understood. This data has
many more patterns and the first two statements work for q = 4, 8, 9 also. It is
quite possible such things are already somewhere in the literature).

We hope to put up a more detailed version on ArXives later.

Acknowledgements Thanks to John Voight for running a calculation on his
excellent computation facilities for q = 2, k = 1, d ≤ 37 for a couple of months,
when I was stuck at d around 20 using SAGE online. Thanks to my former student
Alejandro Lara Rodriguez for his help with SAGE and MAGMA syntax. Thanks
to Simon foundation initiative which provided MAGMA through UR on my laptop
which allowed me to carry out many calculations to higher accuracy, much faster
and often. Thanks to my friends and teachers for their encouragement. This
research is supported in part by NSA grants.
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Appendix: Sample simple results:

(i) Valuations For arbitrary q and k a multiple of q − 1, we have
(0) Pd(k) ∈ Fp(tq−1) and it is also a ratio of polynomials in [1].
(i) The valuation pd(k) is divisible by q(q − 1) and is at least kd. (So p≤d(k) is

also divisible by q(q − 1). )
(ii) We have pd(k) = kd if and only if (I) q is a prime and d is square-free multiple

of q, or (II) q = 2 and d = 4m with m a square-free odd natural number.
(iii) Let q = 2 and let k be odd (without loss of generality) in the usual sense.

Pd(k) has t−(dk+1) term if and only if d is square-free. (Hence, pd(k) = dk + 1 if d
is odd square-free, pd(k) = dk if d is even square-free or 4 times odd square-free,
and pd(k) > dk + 1 in other cases).

The proofs follow by analyzing behavior under automorphisms, and counts of all
primes of degree d as well as of subset of those containing top two degree terms.

(ii) Cancellations at finite level: When q = 2, P≤2(1) = 0. For q > 2, we
have

P1(qn − 1) =
∑ 1

1− ℘qn−1
=

∑ ℘

℘− ℘qn
=

∑
(t+ θ)

t− tqn
= 0.

This leads to many more cancellations, unclear whether substantial for large d.
For q = 2n > 4, P2(qm − 1) = 0.

This is seen by using above and using that when p = 2, f(b) = b2 + ab is
homomorphism from Fq to itself with kernel {0, a}

(iii) Non-vanishing of infinite sums: Let k be a multiple of q − 1 and not
divisible by p.

For any q = 2m, if k > 1 is 1 mod q, then p(k) = p1(k) = k + (q − 1), so that
P (k) 6= 0:

For q = 4, p(k) = p1(k) is the smallest multiple of 12 greater than k if and only
if k > 3 and k is 1 mod 4 or 3, 7 mod 16. So P (k) 6= 0 in these cases.

These follow by straight analysis of Laurent series expansions using binomial
coefficients theorem of Lucas. More results for other q’s are in progress.
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Updates After these conjectures were put on polymath blog by Terrence Tao,
David Speyer gave a very beautiful combinatorial proof for A and of part i of
B and C and found the right generalization in any characteristic., using Carlitz’
sum and the product formula for the Carlitz exponential and combinatorics of
factorization counting and of elementary symmetric functions and power sums. See
Tao’s polymath blog and Speyer’s preprint [S16] linked from there.

Thanks to Terrence Tao and David Speyer!

We now describe some more results and conjectures based on this progress. We
use the notation from [S16, T04].

(1) First we remark that using the well-known generalizations of Carlitz exponen-
tial properties in Drinfeld modules case, Speyer’s proof generalizes from A = Fq[t]
case described above to A’s (there are 4 of these, see e.g., [T04, pa. 64, 65]) of higher
genus with class number one. The general situation, which needs a formulation as
well as a proof, is under investigation.

(2) We have verified by Speyer’s method a few more isolated conjectural explicit
formulas for the rational functions that we had. We have also proved the second
part of Conjecture B which gives an explicit family, by following Speyer’s strategy:

Let q = 2. In Speyer’s notation, proposition 3.1 of [S16] shows that the the
claimed conjecture is equivalent to

g2(1/a2n−1) = A2
n, where An =

[n− 1]

Ln[1]2n−1 .

The left side is related to power sums by Gn := (p2
2n−1 − p2(2n−1))/2.

Theorem (I) If we denote by Yn the reduction modulo 2 of the standard poly-
nomial expression for Gn in terms of elementary symmetric functions ei obtained
by ignoring all monomials which contain ei, with i not of form 2k−1, then Yn = X2

n

with

Xn =

n−2∑
k=0

e2k

2n−k−1fk,

where f0 = 1, fk+1 = fke
2k

1 +Xk+1.
(Equivalently

Xn =

n−2∑
k=0

e2k

2n−k−1(Xk +

k−1∑
j=1

e2k−1+···+2j

1 Xj)

with empty sum being zero convention, the last two terms of bracket could also be
combined to get sum from 0 to k. )

(II) If we substitute 1/Di for e2i−1. and 1/Li for fi in the formula for Xn, we
get An.

(III) In particular, the second part of conjecture B holds.
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Proof sketch: (I) We have Newton-Girard identities relating power sums to
elementary symmetric functions:

pm =
∑ (−1)mm(r1 + · · · rn − 1)!

r1! · · · rn!

∏
(−ei)ri ,

where the sum is over all non-negative ri satisfying
∑
iri = m.

We only care of i of form Nk := 2k−1, as the rest of ei’s are zero, when specialized
to reciprocals, as in Speyer’s proof. Let us put Rk := r2k−1 and Ek := e2k−1. Then
with ∼= denoting ignoring i’s not of form Nk, we have

pm ∼=
∑ (−1)mm(R1 + · · ·Rn − 1)!

R1! · · ·Rn!

∏
(−Ei)

Ri ,

where the sum is over all non-negative Rk satisfying
∑
NkRk = m.

We also only care of m = 2n − 1, 2(2n − 1) in both of which cases, k can be
further be restricted between 1 and n.

When m = 2n − 1, we only care about the monomials where the coefficient is
odd (we do not care about the exact coefficient). This corresponds to the odd
multinomial coefficients, since the summing condition reduced modulo 2 implies∑
rk odd, that is why we can reduce to the multinomial coefficient. Now by Lucas

theorem, this corresponds exactly to having no clash between the base 2 digits of
Ri’s.

Multinomial coefficient calculation implies that p2n−1 consists of 2n−1 monomials
in Ek’s (each of ‘weight’ 2n − 1) with odd coefficients, out of which (‘the second
half in lexicographic order’) 2n−2 that make Xn are exactly the ones containing
es1 with s ≤ 2n−1 − 1. The rest exactly cancel (when squared) with corresponding
terms from m = 2(2n − 1) case (which we care only modulo 4) which have odd (or
in fact 3 modulo 4) coefficients, and cross product terms when you square match
with the even non-zero (modulo 4) coefficients of this case. This also explains Yn
is a square and gives formula for its square-root Xn.

Examples: (The first corresponds to the last example of [S16])
X2 = e3

X3 = e7 + e2
3e1

X4 = e15 + e2
7e1 + e4

3(e3 + e3
1)

X5 = e31 + e2
15e1 + e4

7(e3 + e3
1) + e8

3(e3e
4
1 + e7

1 + e7 + e2
3e1)

X6 = e63 + e2
31e1 + e4

15(e3 + e3
1) + e8

7(e3e
4
1 + e7

1 + e7 + e2
3e1) + e16

3 (....)
and so on.
(II) (See e.g., [T04] for notation, definition, properties) If logC and expC de-

notes the Carlitz logarithm and exponential, which are inverses of each other,
logC(expC(z)) = z gives, by equating coefficients of z2n

for n > 1,

n∑
k=0

1/(D2k

n−kLk) = 0.

The expression for Xn we get thus reduces to the terms from k = 0 to n − 2
whereas k = n − 1, n terms give claimed An, thus proving the claim (as we are in
characteristic two).

The proof is by induction, just using

1

Lk+1
+

1

Lk[1]2k =
1

Lk
(

1

[k + 1]
+

1

[1]2k ) =
[k]

Lk+1[1]2k
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being the same calculation for fk+1 + fke
2k

1 as well as the two terms combination
claim above.

(III) This follows as in [S16], by specializing the symmetric functions to recip-
rocals of polynomials and using the evaluation of ei’s coming from Carlitz sum-
product formula for Carlitz exponential.

(3) Following [S16], we write Gp(u) = ((1− up)− (1− u)p)/(p(1− u)p). Let us
write G(k), Gd(k) etc. for

∑
Gp(1/℘k). Finite level results similar to (i, ii, iii) on

page 5 can be generalized, for example, we have valuation divisibility by q(q − 1)
at finite level, for the same reasons and vanishing for degree 1 and k = qn − 1, for
q not a prime. Here is a generalization of the open conjecture C (ii, iii) to any q.

(4) Conjecture / Hypothesis D Let k be a multiple of q− 1 and not divisible
by p. (i) Let q be a prime. G(k) = 0 if and only if k = q−1, (ii) If q is not a prime,
then G(k) = 0 if k = qn− 1 or more generally if k = i(qn− 1)−

∑r
j=1(qj − 1), with

r < i ≤ p and j < n, (iii) For q a prime, G(qn − 1) = ([n− 1]/[1]q
n−1

)q.

Remarks (I) It should be noted that for q of even moderate size (say 9) the com-
putations blow up quickly, so we do not yet have reasonable/satisfactory numerical
evidence for D. We are still trying to check and improve the statement.

(II) The ‘if’ part of D (i) is proved in Thm. 1.6 of [S16]. The proof of ‘only
if’ part for q = 2 in the first version should generalize easily. It is plausible that
the techniques and the identities of q = 2 proof above generalize readily to settle
part (iii) of conjecture D. The combinatorics needed for part (ii) has not yet been
worked out. These (together with characterization of vanishing) are currently under
investigation.

The author and his students are working on some of these conjectures, charac-
terization of vanishing (which represents extra or clean symmetry), higher genus
and other variants and the finite level aspects, which will need different tools. Till
the work is published, more updates will be listed at the end of
http://www.math.rochester.edu/people/faculty/dthakur2/primesymmetryrev.pdf
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Updates to Arxive version 2 of 21 March 2016

(4 April 16) Misprints k+1 for k in 2 places in the last formula of pa. 7 in arxive
version 2 is corrected in this version.

(23 March 16) We have proved q = 3 case of the ‘only if’ part of the Conjecture
D (i) as follows:

For even k > 2 not divisible by 3, we prove that the valuation of G(k) is the
smallest multiple of 6 greater than k, unless base 3 expansion of k ends in 22,
in which case it is 3 times the valuation of G((k − 2)/3). (In particular, G(k) is
nonzero). This is done by applying 2.3.1 (3) of author’s paper ‘Power sums ....’
FFA 2009 available at

(http://www.math.rochester.edu/people/faculty/dthakur2/ffafinal.pdf)
which shows (by straight-forward estimates) that valuation of G(k) is the same as
that of G1(k), which is the same as that of S1(k), which is described in 2.3.1 (3) by
recipe which specializes to the answer above. (Note that in degree 1 all things are
prime, so we can use power sums in degree 1), The higher degrees (and other terms
involving S1(mk) in geometric series coming up in expansion of G(k)) contribute at
least 2k, and the valuation is less than it (except for the case k = qn− 1, when it is
2k+2 and can be treated separately by the same formulas) implying no cancellation.

Preliminary calculations show that for any q prime, under our hypothesis, the
valuation of G(k) is that of G1 (and probably of S1 given by reference above), but
proof will be a little difficult as instead of 2k needed we get (q− 1)k easily and will
need more effort to show no cancellation.

(4 April 16) The proof of Conj. B part 2 generalizes to the proof of Conj.
D, part iii, as follows: Basically replace all 2-powers by q powers, and fix signs,
replace Li by `i = (−1)iLi and follow the exact same calculations on resulting
formulas, with one important difference: When q is an odd prime, if one wants
to use the symmetric functions (to get eqk−1’s rather than e(qk−1)/(q−1)’s) of the

set 1/ak, where a runs through all the non-zero polynomials rather than just the
monic polynomials, we have to note that the sums on the new sets are (q−1) times
the ones on the old set, and so straight mod q2 calculation shows that we now
have to calculate Gn = ((q − 1)pqqn−1 + pq(qn−1))/q = pqqn−1 − (pqqn−1 − pq(qn−1))/q

reduced to characteristic q now. We get Xn =
∑
eq

k

qn−k−1
fk with f0 = 1 and

fk+1 = −(fke
qk

q−1 +Xk+1).
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